Android Debugging and Performance Analysis

Version - 2015.04

Hands-On Exercises for

Android Debugging and

Performance Analysis

v. 2015.04

WARNING:

The order of the exercises does not
always follow the same order of the
explanations in the slides. When
carrying out the exercises, carefully
follow the exercise requirements. Do
NOT blindly type the commands or
code as found in the slides. Read
every exercise in its entirety before
carrying out the instructions.

© OPERSYS INC.

1/7

Android Debugging and Performance Analysis Version - 2015.04

[Noe

These exercises are made available to you under a Creative Commons Share-
Alike 3.0 license. The full terms of this license are here:

https://creativecommons.org/licenses/by-sa/3.0/
Attribution requirements and misc.:

« This page must remain as-is in this specific location (page #2), everything
else you are free to change; including the logo :-)

» Use of figures in other documents must feature the below “Originals at”
URL immediately under that figure and the below copyright notice where
appropriate.

* You are free to fill in the space in the below “Delivered and/or customized
by” section as you see fit.

(C) Copyright 2010-2015, Opersys inc.
These exercises created by: Karim Yaghmour

Originals at: www.opersys.com/community/docs

Delivered and/or customized by:

© OPERSYS INC. 2/7

Android Debugging and Performance Analysis Version - 2015.04

Working with the AOSP sources

1. Generate and run the idegen script

2. Add the Android's sources as a Java project

3. Explore Android Studio's Java sources browsing capabilities (i.e. try out the shortcuts
suggested a developer.android.com)

Kernel tools and capabilities
1. Look for the system_server's memory usage in the /proc filesystem
2. Reconfigure the kernel to support:
a. The “function” and “function_graph” tracers. Make sure you enable
CONFIG_DYNAMIC_FTRACE and disable CONFIG_STRICT_MEMORY_RWHX.
b. Modules and module unloading. You don't need to enable forced module unloading.
Here's a reminder on how to get the kernel configuration that uses the default “flo”

configuration as its starting point:
$ cd kernel/msm/
$ make ARCH=arm flo_ defconfig
$ make ARCH=arm menuconfig

3. Rebuild, reflash, reboot. To rebuild the kernel, you need to do the following from the

“kernel/msm/” directory -- note the “...” which you'll have to replace with the path to your
AOSP:

$ export TARGET=/home/.../kernel/gcc/arm-eabi-4.6/bin/arm-eabi
$ make ARCH=arm CROSS_COMPILE=${TARGET}—

In order for the AOSP to take your newly built kernel into account, you'll need to do this -- the
following assuming that you've run the appropriate “. build/envsetup.sh” and “lunch” from the
toplevel:

croot

cd device/asus/flo-kernel/

cp kernel kernel-orig

croot

cp kernel/msm/arch/arm/boot/zImage device/asus/flo-kernel/kernel
make -3j8

4. Start ftrace using the “function” tracer and monitor its output. Careful: once you start ftrace
by echoing “1” into tracing_on, it'll stay on until you stop it (i.e. echo “0” into same file).
5. Use perf-stat to measure standard counters for:
60 seconds of the SurfaceFlinger execution while idle
60 seconds of the system_server process while idle
6. Use perf-record/report/annotate to profile the same
7. Use ftrace's function profiling capability to profile the same
8. Compare the results of the previous 3 exercises
9. Try using the systrace/atrace combo to monitor Android
10. Use ftrace to capture from the command line the effects of the call to the collapse and
expand of the status bar -- you may need to expand the ftrace buffer size:

v »nn-nnn

© OPERSYS INC. 3/7

Android Debugging and Performance Analysis Version - 2015.04

service call statusbar 1
service call statusbar 2

11. User perf to monitor the statistics of the system_server process while you start the
browser. Make sure you're monitoring just the system_server process.

12. Use perf to count just the number of task switches that occur when you start the calculator
app-

13. Use perf to record the execution of system_server while you open the gallery app

14. Add the circular buffer device driver located at http://www.opersys.com/downloads/circular-
driver-111207.tar.bz2 to your board's BSP (i.e. device/asus/flo/) and build it into a .ko file. The
AOSP used for the class had a stub .ko file in device/asus/flo/circular-driver/ directory, it's safe
to replace it with the real driver. To built the driver, you'll first need to modify the Makefile
included in the driver's directory to point to the kernel found in the kernel/msm/ directory. To
compile the driver, you will need to go to its directory and type a command such as -- note the
“...” which you'll have to replace with the path to your AOSP:

$ make ARCH=arm CROSS_COMPILE=/home/.../kernel/gcc/arm-eabi-4.6/bin/arm-eabi-
15. Driver testing:

* Use “adb push” to get the module copied on the device

* Use “insmod” to load the driver on the target

* The driver will appear as “/dev/circchar”

* Use “echo string > /dev/circchar” to write to the circular buffer

* Use “cat /dev/circchar” to read the content of the buffer
16. Now that you've tested the driver indepently, rebuild your AOSP with the new driver,
reflash and reboot. The Opersys system service should be able to now use the driver directly.
You can check the logcat to verify that it does.
17. Modify the driver to add a static tracepoint to monitor each read() and write() operation to
it. Use trace_printk() to achieve that, remember that vyou'll have to use
MODULE_LICENSE(“GPL") in order to have access to this symbol. Rebuild your driver and
reload it on the device. Start ftrace tracing and make sure you can see the output in the
ftrace output at runtime when you do a “cat” or “echo” as above.
18. Create a kprobe that catches all calls to the ioctl() system call and logs them into ftrace
using trace_printk(). Build the kprobe as a driver, load it on your device and verify that you
can see the output in ftrace's traces.

Native debugging/profiling tools

1. Use strace to monitor the system calls made by the SurfaceFlinger during the startup of an
app

2. Use strace to monitor the system_server

3. Use gdb on your host to step through a call to “service list”. You'll need to start the
command with “gdbserver” and attach to it from the host.

4. Instrument the native parts of the Opersys system service to log to ftrace's “trace_marker”
file. Namely use the ATRACE_* macros to instrument:

© OPERSYS INC. 4/7

Android Debugging and Performance Analysis Version - 2015.04

» opersyshw_flo.c

* com_android_server_OpersysService.cpp
5. Update your target and rerun it with ftrace enabled and check that the instrumentation
added in the previous exercise is reflected in the traces generated. Make sure you review the
slides on how to enable tracing for the AOSP parts.
6. Use gdb on the host to step from the JNI side of the system service all the way down the
driver call. IOW, add a breakpoint to init_native(), read_native() and write_native() and follow
the calls all the way to the corresponding open(), read() and write() occurring in the opersyshw
HAL.

Java tools
1. With the device connected to your host, start ddms and check out the threads run by the
system_server and its heap information
2. Use traceview and dmtracedump to monitor the execution the system service added in the
previous section
3. Compare those results with the information collected by the ftrace instrumentation
4. Configure Eclipse to connect to ddms for your AOSP project imported earlier
5. With the system_server process selected in ddms, set a breakpoint in
frameworks/base/services/core/java/com/android/server/StatusBarManagerService.java:expa
ndNotificationsPanel(). Use “service call statusbar 1” to expand the status bar. Eclipse should
now break into the debug view at the breakpoint you selected. Now, you can step in the
Status Bar Manager's code for expanding the notifications panel.
6. With the launcher process selected in ddms, set a breakpoint in
packages/apps/Launcher2/src/com/android/launcher2/Launcher.java:showAllApps(). Click on
the show all apps button on Android's home screen. Eclipse should now break into the debug
view at the breakpoint you selected. You can now step through the Launcher's code for
showing all apps.
7. Instrument the Java side of the system service, namely OpersysService.java, to log to
ftrace's trace_marker file.
8. Update your system and check that you can use ftrace to follow all the tracepoints from the
java layer, to the native layer, and into the driver.
9. Full system service debugging:
» With the system_server process selected in ddms, set breakpoints in the Opersys
system service added earlier, namely in read() and write()
» Use gdb to set breakpoints in the system service's JNI code: init_native(), read_native()
and write_native()
* Have the system service invoked using “service call opersys ...”
» Step through the code starting from the system service's java code all the way down to
the HAL module's writing to the device driver.

© OPERSYS INC. 5/7

Android Debugging and Performance Analysis Version - 2015.04

Extra
1. Add a glibc-based filesystem to your AOSP by following the exercises for the Embedded
Android class (see courseware at http://www.opersys.com/training/embedded-android)
2. Use EGL trace and/or apitrace to monitor the calls made by a couple of 3D benchmarks
and their effects
3. Modify ftrace's functionality to record CPU counters on function entry/exit and report the
results in the traces. Have a look at register_ftrace_function/unregister_ftrace_function.
4. Try getting the following to work with your AOSP:

ktap

Linaro's uprobes patch

The BPF triggering patches

Some of the benchmarking tools available for Android, for reference:
Apps:

Oxbench
AnTuTu
Passmark
Vellamo
Geekbench2
GLBenchmark
Quadrant Standard Edition
Linpack
Neocore
3DMark
Epic Citadel
Androbench
CF-bench
SD Tools
RL Benchmark: SQL
Benchmark & Tunning
A1 SD Bench
Quick Benchmark Lite
3DRating benchmark
Smartbench 2011
NenaMark
An3DBenchXL
CaffeineMark
NBench

© OPERSYS INC.

6/7

Android Debugging and Performance Analysis Version - 2015.04

AndEBench
SmartBench 2012
RealPi
Rowboperf

Browser-based:
Rightware Browsermark
Octane
V8 browser perf
SunSpider
Methanol

Native/CLlI:
SPEC2000, SPEC2006
netperf
LMbench
microbench
cpueater

© OPERSYS INC. 717

