
Android Development Exercises Version - 2012.08

HandsOn Exercises for

Android Development

v. 2012.08

WARNING:
The order of the exercises does not
always follow the same order of the
explanations in the slides. When
carrying out the exercises, carefully
follow the exercise requirements. Do
NOT blindly type the commands or
code as found in the slides. Read
every exercise in its entirety before
carrying out the instructions.

© OPERSYS INC. 1/8

Android Development Exercises Version - 2012.08

These exercises are made available to you under a Creative Commons Share
Alike 3.0 license. The full terms of this license are here:

https://creativecommons.org/licenses/bysa/3.0/

Attribution requirements and misc.:

• This page must remain asis in this specific location (page #2), everything
else you are free to change; including the logo :)

• Use of figures in other documents must feature the below “Originals at”
URL immediately under that figure and the below copyright notice where
appropriate.

• You are free to fill in the space in the below “Delivered and/or customized
by” section as you see fit.

(C) Copyright 20102012, Opersys inc.

These exercises created by: Karim Yaghmour

Originals at: www.opersys.com/training/androiddevelopment

Delivered and/or customized by:

© OPERSYS INC. 2/8

Android Development Exercises Version - 2012.08

Android Class Exercises – Day 1

A quick introduction to Java
1. Install Sun's JDK and JRE (sun-java6-jdk and sun-java6-jre)
2. Create and run a HelloWorld in Java
3. Create a java program that creates two threads that call a same synchronized function

that increments a number shared by the two threads and prints out the number's value
along with a string identifying the caller.

Introduction to Android Development
1. Install the SDK
2. Install the Eclipse plugin
3. Configure Eclipse for the SDK
4. Use the “android” tool to install platform support for 2.3. and 3.0
5. Create an Android 2.3 emulator image
6. Create a “Hello World” project using Eclipse and run it in the emulator
7. Make your “Hello World” use the toast function
8. Make your “Hello World” use the logging function and use logcat to view your output

Application Fundamentals
1. Implement the onPause() handler for your “Hello World” app and monitor what

happens when you switch applications
2. Implement onSaveInstanceState() to store data in a Bundle and check that the data is

there in the subsequent onCreate()
3. Implement the onConfigurationChanged() and onRetainNonConfigurationInstance

callbacks and monitor their behavior
4. Implement a Service that is started by your “Hello World” ... nothing fancy, just make

sure the Service's onStart() is called

User Interface
From here on, we will start building components for a full app to which we will add more
functionality along the way. The app is basically a Twitter-like client. The goal in this section
is to create the following elements which will become “active” as we tie the components
together:

1. Main Activity for:
1. Displaying list of events (ListView)
2. Creating a new event (EditText)
3. Managing list of people “followed” (Other Activity)

2. Menu for:
1. Entering credentials (Dialog)

© OPERSYS INC. 3/8

Android Development Exercises Version - 2012.08

2. Changing background color (Dialog)
3. People Activity:

1. Adding new person (EditText)
2. List of people “followed”

4. Context menu for item in PeopleActivity
5. Credentials dialog (custom)
6. Background color dialog (custom)

© OPERSYS INC. 4/8

Android Development Exercises Version - 2012.08

Android Class Exercises – Day 2

Application resources
1. Have different layout for portrait and landscape mode for the UI elements created

earlier.

Intents
1. Implement a Broadcast Receiver that ties in to the Intent of your choice. You can see a

full list of Intents you can listen to in the documentation. On firing, the Broadcast
Receiver should notify the status bar. Make the selecting of the status bar expanded
start the main user interface Activity implemented earlier.

Data storage
1. Use the Shared Preferences to store/retrieve the username/password and color from

your user interface.
2. Add a menu option and corresponding Activity or Dialog allowing the user to enter a

URL to a file on the web. Implement the necessary functionality to retrieve the file from
the net, store it locally and list the download in the event list.

3. Enable the user to “open” the file by selecting the corresponding event in the event list.
Try using an Intent to get an app to take care of opening the file and presenting it to the
user.

4. Use SQLite to store new events entered in the TextBox by the user. Those text events
should also be added to the ListView and the ListView should restore itself on Activity
restart. Use SQLiteOpenHelper().

Content providers
1. Take the store/retrieve functionality implemented in #4 of the previous section and

wrap it inside a basic Content Provider. Your Activity should now be using a Content
Provider to read/write its data. Your Content Provider should continue using SQLite for
its storage.

2. Take the file functionality implemented in #2 and #3 of the previous section and make
the files stored by the Content Provider instead of locally in the Activity.

3. Make the Broadcast Receiver implemented in #1 of the Intents section exercise fire off
a service that adds the description of the Intent captured by the Broadcast Receiver to
the Content Provider. You will likely need to start a Service for that. Notice that your
App will not see the new data in the Content Provider's DB since its last restart. Fixing
this will be part of a later exercise.

© OPERSYS INC. 5/8

Android Development Exercises Version - 2012.08

Android Class Exercises – Day 3

REST applications
1. Tie the previously implemented Content Provider to the “http://identi.ca” service.

Identi.ca is a Twitter-like service. It is based on the StatusNet open source project and
provides a REST API. You can use parts of the API without having an account, but you
will need to create an account in order to be able to post and to subscribe to friends'
feeds. You can try out the REST API commands from your command line using the
“curl” command in Ubuntu; some of them can also run from your browser. For
example, here's how you:
◦ A user's timeline (no authentication required):

▪ curl http://identi.ca/api/statuses/friends_timeline/usr.xml
◦ Post (authentication required):

▪ curl -u usr:pwd http://identi.ca/api/statuses/update.xml -d status='Howdy!'
◦ See your friends' timeline (authentication required):

▪ curl -u usr:pwd http://identi.ca/api/statuses/friends_timeline.xml

Use the Sync Adapter example to copy/paste code in as much as possible. By the end
of this exercise, you should be able to follow/unfollow other users and post messages
to your feed so that everyone can see them.

You will find more documentation about StatusNet's API here:
http://status.net/wiki/HOWTO_Use_the_API
http://status.net/docs/api/
http://status.net/wiki/Twitter-compatible_API
In addtion to XML, you can also get information in: json, rss, atom.

© OPERSYS INC. 6/8

Android Development Exercises Version - 2012.08

Android Class Exercises – Day 4

Remote Interfaces
1. Create a service that provides a remote interface that provides the following through the
previously-implemented Content Provider:

• Sending a new event
• Getting the last N events

2. Create a new app that has a single Activity that uses the previously-implemented service
and has two buttons:

• One for sending an event with the current time
• One for getting the last event and showing it in a dialog box

Note here that by using two apps you'll be running in two separate processes, hence realizing
the benefits of using a remote interface.

Security and Permissions
1. Modify the service implemented in the previous exercise set to require a set of permissions
for accessing its API.
2. Modify the new app implemented in the previous exercise to use the service permissions to
access the service's API.

Device Administration
1. Create a device administration app that:

• Sets the minimum password length to 10 characters and asks the user to enter a
password

• Sets the maximum user inactivity period to 10 seconds
2. Write an app that uses an intent of type ACTION_VIEW on the package manager service to
install a “Hello Wold!” app apk. Use the “assets/'' directory to store the “Hello World” apk.
You will need to copy the asset to local storage to get an absolute path to pass with the Intent.

© OPERSYS INC. 7/8

Android Development Exercises Version - 2012.08

Android Class Exercises – Day 5

Native Development
1. Get and install the NDK
2. Write an app that uses JNI to get the contents of /proc/cpuinfo and displays them to the
user.
3. Write a fully native app that regularly updates a world-readable file and write a simple
Activity that opens the file and shows its contents to the user. Note that the app name in the
manifest must be: “android.app.NativeActivity”.

© OPERSYS INC. 8/8

