Android Security Internals

Version - 2025.12

Android Security Internals

Hands-On Exercises for

v. 2025.12

WARNING:

The order of the exercises does not
always follow the same order of the
explanations in the slides. When
carrying out the exercises, carefully
follow the exercise requirements. Do
NOT blindly type the commands or
code as found in the slides. Read
every exercise in its entirety before
carrying out the instructions.

© OPERSYS INC.

1/20

Android Security Internals Version - 2025.12

[0l

These exercises are made available to you under a Creative Commons Share-
Alike 3.0 license. The full terms of this license are here:

https://creativecommons.org/licenses/by-sa/3.0/
Attribution requirements and misc.:

« This page must remain as-is in this specific location (page #2), everything
else you are free to change; including the logo :-)

» Use of figures in other documents must feature the below “Originals at”
URL immediately under that figure and the below copyright notice where
appropriate.

* You are free to fill in the space in the below “Delivered and/or customized
by” section as you see fit.

(C) Copyright 2018-2025, Opersys inc.
These exercises created by: Karim Yaghmour

Originals at: www.opersys.com/training/android-security-internals/

Delivered and/or customized by:

© OPERSYS INC. 2/20

Android Security Internals Version - 2025.12

Class Preparation Reference / Reminder

This section contains material that should have been used prior to class to prepare ahead of
time. It’s provided here as a reference/reminder.

Class Preparation for Cuttlefish

WARNING: The list of prerequisites for Android development changes over time

1. Install Android Studio:
https://developer.android.com/studio

2. Install the required packages to build Android:
See the "Installing required packages" instructions for the relevant Ubuntu
version here: https://source.android.com/docs/setup/start/requirements

3. Make sure you have the “repo” tool available:

See the “Install Repo” here:
https://source.android.com/docs/setup/start/requirements#install-software
You may need to log out and back in if the “~/bin” directory wasn’t already
in your path.

4. Fetch the AOSP:

We'll be using 16.0.0_r2 Note that the new lines that start with “>” are
printed by the shell. Adding a “>” to the input you type will break the
following commands. Assuming you have a directory called “android” in

your home directory:

$ mkdir -p ~/android/android-16.0.0_r2

$ cd ~/android/android-16.0.0_r2

$ repo init -u https://android.googlesource.com/platform/manifest \
> -b android-16.0.0_r2

$ repo sync

Note:

* Make sure the path depth is short. For reasons we do not control,
the Cuttlefish emulator will refuse to start if the path length (in terms
of characters) is too long. It's our understanding that Google is
working on fixing this. In the mean time, make sure you keep the
path relatively short in length. Generally our experience has been
that it should be less than around 100 characters.

© OPERSYS INC. 3/20

Android Security Internals Version - 2025.12

- Fetching the sources is a fairly lengthy process.

5. Check that you got the right AOSP version:

$ cat .repo/manifests/default.xml | grep revision
<default revision="refs/tags/android-16.0.0_r2"

Make sure it says “android-16.0.0_r2” in this output.

6. Download the Android GKI kernel:
Note that we're just downloading the kernel for now, we aren’t building it.
a. Create directory for working on kernel — assuming this is outside your the top-level of

the AOSP:
$ ed ~/android/
S mkdir androidl6-6.l12-kernel
$ cd androidlé-6.12-kernel

b. Get the kernel itself and its tools:
$ repo init -u https://android.googlesource.com/kernel/manifest \
> -b common-androidl6-6.12
$ repo sync

7. Download and setup the Cuttlefish tools (Original instruction at
https://source.android.com/docs/setup/start#launch_cuttlefish):
Notes:
* Do NOT copy “>” symbols at the beginning of a line, they are added
by the shell, you don'’t type them in.
» The last instruction will reboot your computer (sudo reboot). Make
sure that you can safely do that without loosing any information.
« Watch out for errors during the build: you might be missing
packages. We've done our best to include all those you are likely to
need, but it's possible your system needs a few more.

$ ed ~/android/

$ sudo apt install -y apt-transport-https curl gnupg \

> git devscripts equivs config-package-dev debhelper-compat golang

$ curl -fsSL https://bazel.build/bazel-release.pub.gpg | gpg \

> —--dearmor >bazel-archive-keyring.gpg

$ sudo mv bazel-archive-keyring.gpg /usr/share/keyrings

S echo "deb [arch=amd64 signed-by=/usr/share/keyrings/bazel-archive-
keyring.gpg] https://storage.googleapis.com/bazel-apt stable jdkl.8" | sudo

tee /etc/apt/sources.list.d/bazel.list
$ sudo apt update && sudo apt install bazel
$ git clone https://github.com/google/android-cuttlefish
$ cd android-cuttlefish
$ git checkout 5b0faf9cf400185e2fc0e89bb498981a84£05603
$ for dir in base frontend; do

pushd $dir

sudo mk-build-deps -i

© OPERSYS INC. 4/20

Android Security Internals Version - 2025.12

dpkg-buildpackage -uc -us

popd
done
$ sudo dpkg -i ./cuttlefish-base * *64.deb || sudo apt-get install -£
$ sudo dpkg -i ./cuttlefish-user * *64.deb || sudo apt-get install -f
$ sudo usermod -aG kvm,cvdnetwork,render S$USER
$ sudo reboot

8. Build the AOSP:
Return to the AOSP directory and build it. We don'’t specify any “j” flag

since on a modern AOSP it'll be automatically figured out.

$ c¢d ~/android/android-16.0.0_r2

$. build/envsetup.sh

$ lunch aosp_cf _x86_64 only phone-aosp_current-eng
$ make

You MUST check that the build completed successfully. Generally, you'll
see this at the end of a successful build in the output (typically in green):

##4## build completed successfully (...) ####

9. Give the AOSP a spin:
From the same directory where you build the AOSP, start the Cuttlefish

target:
$ HOME=${PWD}/out launch_cvd

At this point, the Cuttlefish target will start with your custom-built Android
running inside and print messages to the command line'. However
Cuttlefish itself won’t be visible. You’ll need to use a Chrome-based
browser (Firefox will NOT work) and direct it to https://localhost:8443 — do
not omit the “https” or it won’t work. You will likely need to accept some
security exceptions to access the web page on which you’ll see a device
listed since it doesn’t have a proper certificate. Once you click on the
device you’ll then see the Cuttlefish device interface.

1 If you are seeing errors regarding “kvm” then see the next section.

© OPERSYS INC. 5/20

Android Security Internals Version - 2025.12

Cloud Android - Chromium - o0 9
@ Cloud Android x| + v

& C A Notsecure https://localhost 8443 < * O a

= Cloud Android

Devices (5]

® o1

Display 0 - 720x1280 (320 DPI)
Show All

Thu, Mar 23

0 Virtual SD card

Tap to set up

You can stop Cuttlefish on the command line as well:
$ HOME=${PWD}/out stop_cvd

© OPERSYS INC. 6/20

Android Security Internals Version - 2025.12

Extended Stack Addition to AOSP

For the purpose of the exercises we will do in class, you will need to add several components
to create a new system service, a new HAL and a corresponding HAL module and driver. The
details of these additions are covered in Opersys’ Embedded Android class material
(https://www.opersys.com/training/embedded-android-training/). The archive we use for the
present class is tailored for the present exercise set. Hence, while you may want to refer to
the Embedded Android class material for background, we suggest you continue referring to
the present exercises for the hands-on portions of the present class.

1) Backup your AOSP’s existing kernel (watch out for the differences between “x86_64" and

“x86-64") and remove the original kernel build artifacts from the output:
$ cd ~/android/android-16.0.0_r2
cd kernel/prebuilts/6.12/
mv x86_ 64 x86_64-orig
mkdir x86_ 64
cd ../common-modules/virtual-device/6.12
mv x86-64 x86-64-orig
mkdir x86-64
cd ~/android/android-16.0.0_r2/out/target/product/vsoc_x86 64/
rm kernel

Uy Uy Ur Uy Uy U Uy A

2) Download and apply the Opersys patch for adding a system service, a HAL, corresponding
HAL module and driver, and replacement kernel for Cuttlefish. Download the file here to your
“~/android” directory:

https://drive.google.com/file/d/1KunVFC9qEIkz7UziXXzA3aD64Bhg2VUO0/view
$ ed ~/android/
$ tar xvjf halext-opersys-cuttlefish-16.0.0_r2-no-se-251216.tar.bz2
$ find halext-opersys-cuttlefish-16.0.0_r2-no-se-251216 -exec touch {} \;
$ cp -r halext-opersys-cuttlefish-16.0.0_r2-no-se-251216/* android-16.0.0_r2

3) Rebuild your AOSP:
$ cd ~/android/android-16.0.0_r2
$. build/envsetup.sh
$ lunch aosp_cf x86_64_only phone-aosp_current-eng
S make -3j32

4) Restart Cuttlefish to take into account the new additions (don’t forget the “--noresume”

parameter):
S HOME=$ {PWD}/out launch _cvd --noresume

Cuttlefish should restart with no noticeable difference in the immediate.

© OPERSYS INC. 7/20

Android Security Internals Version - 2025.12

SEAndroid / SELinux Basics

In this section you will learn how to:
* Use the SELinux/SEAnNdroid tools
* Look for SELinux/SEAndroid information around the filesystem
» Check security errors in the logs

1. Familiarize yourself with the following tools and commands if you've never used the before:

* Check the status of SELinux enforcement:
vsoc x86 64:/ # getenforce
Enforcing

» Disable SELinux enforcement — note that the value you set is not persisted to storage

and will be reset to the default value upon reboot:
vsoc_x86_64:/ # setenforce 0
vsoc x86 64:/ # getenforce
Permissive

+ Enable SELinux enforcement:
vsoc _x86 64:/ # setenforce 1
vsoc_x86_64:/ # getenforce
Enforcing

» Check kernel logs for SELinux denials:
vsoc_x86 64:/ # dmesg | grep avc

[9.290319] type=1400 audit (1603625582.200:4): avc: denied { execute no_trans } for comm="init"
path="/vendor/bin/toybox_vendor" dev="dm-1" ino=228 scontext=u:r:init:s0 tcontext=u:object r:vendor toolbox_exec:s0 tclass=file
permissive=0 b/132695863

[9.304479] type=1400 audit (1603625582.216:5): avc: denied { execute no_trans } for comm="init"
path="/vendor/bin/toybox_vendor" dev="dm-1" ino=228 scontext=u:r:init:s0 tcontext=u:object r:vendor toolbox_exec:s0 tclass=file
permissive=0 b/132695863

[22.821163] type=1107 audit (1603625595.732:6): uid=0 auid=4294967295 ses=4294967295 subj=u:r:init:s0 msg='avc: denied { set }
for property=vendor.wlan.firmware.version pid=305 uid=1010 gid=1010 scontext=u:r:hal wifi default:s0
tcontext=u:object_r:vendor_ default prop:s0 tclass=property_ service permissive=0' b/131598173

[22.824328] type=1107 audit (1603625595.736:7): uid=0 auid=4294967295 ses=4294967295 subj=u:r:init:s0 msg='avc: denied { set }
for property=vendor.wlan.driver.version pid=305 uid=1010 gid=1010 scontext=u:r:hal wifi default:s0
tcontext=u:object_r:vendor_ default prop:s0 tclass=property_ service permissive=0' b/131598173

» Check Android logs for SELinux denials:
vsoc x86 64:/ # logcat | grep avc

10-25 07:33:02.200 188 188 W init : type=1400 audit(0.0:4): avc: denied { execute_no_trans } for
path="/vendor/bin/toybox vendor" dev="dm-1" ino=228 scontext=u:r:init:s0 tcontext=u:object_r:vendor_ toolbox exec:s0 tclass=file
permissive=0 b/132695863

10-25 07:33:02.216 190 190 W init : type=1400 audit(0.0:5): avc: denied { execute_no_trans } for
path="/vendor/bin/toybox vendor" dev="dm-1" ino=228 scontext=u:r:init:s0 tcontext=u:object_r:vendor_ toolbox exec:s0 tclass=file
permissive=0 b/132695863

10-25 07:33:15.501 148 148 E SELinux : avc: denied { find } for interface=android.hardware.opersys::IOpersys
sid=u:r:system_server:s0 pid=483 scontext=u:r:system server:s0 tcontext=u:object_r:default android hwservice:s0
tclass=hwservice_manager permissive=0

10-25 07:33:15.501 147 147 E SELinux : avc: denied { add } for pid=483 uid=1000 name=opersys scontext=u:r:system server:s0
tcontext=u:object_r:default_android service:s0 tclass=service manager permissive=0

10-25 07:33:15.732 1 1 W /system/bin/init: type=1107 audit(0.0:6): uid=0 auid=4294967295 ses=4294967295 subj=u:r:init:s0
msg='avc: denied { set } for property=vendor.wlan.firmware.version pid=305 uid=1010 gid=1010 scontext=u:r:hal wifi default:s0
tcontext=u:object_r:vendor default prop:s0 tclass=property service permissive=0' b/131598173

10-25 07:33:15.736 1 1 W /system/bin/init: type=1107 audit(0.0:7): uid=0 auid=4294967295 ses=4294967295 subj=u:r:init:s0
msg='avc: denied { set } for property=vendor.wlan.driver.version pid=305 uid=1010 gid=1010 scontext=u:r:hal wifi_default:s0
tcontext=u:object_r:vendor default prop:s0 tclass=property service permissive=0' b/131598173

10-25 07:34:03.185 0 0 I selinux : avc: received setenforce notice (enforcing=0

10-25 07:34:03.725 148 148 I SELinux : avc: received setenforce notice (enforcing=0
10-25 07:34:05.456 147 147 I SELinux : avc: received setenforce notice (enforcing=0

. 'C'ompare output from “ps” with and without security context information:
vsoc_x86 64:/ # ps -A

USER PID PPID VSZ RSS WCHAN ADDR S NAME
root 1 0 10782796 7236 do_epoll + 0 s init
system 4100 4039 13830920 274624 do_epoll + 0 S system server

© OPERSYS INC. 8/20

Android Security Internals Version - 2025.12

bluetooth 4225 4039 12964824 126764 do_epoll + 0 S com.android.bluetooth
u0_alo4 4243 4039 13043784 234340 do_epoll + 0 S com.android.systemui
webview zyg+ 4322 4040 1768136 69960 do_sys po+ 0 S webview zygote

vsoc x86 64:/ # ps -A -2

LABEL USER PID PPID VSZ RSS WCHAN ADDR S NAME

u:r:init:s0 root 1 0 10782796 7236 do_epoll + 0 S init
u:r:system_server:s0 system 4100 4039 13830968 275908 do_epoll + 0 S system_server
u:r:bluetooth:s0 bluetooth 4225 4039 12964824 126764 do_epoll + 0 S com.android.bluetooth
u:r:platform app:s0:c512,c768 u0_al04 4243 4039 13043824 234604 do_epoll + 0 S com.android.systemui
u:r:webview_zygote:s0 webview_zyg+ 4322 4040 1768136 69960 do_sys_po+ 0 S webview_zygote

The -Z flag enables you to see the security context associated with each process
running in the system.

Compare the output from “Is” with and without security context information:
vsoc x86 64:/ # 1ls -al

dr-xr-xr-x 64 root root 0 2020-10-25 07:32 acct

drwxr-xr-x 48 root root 960 2020-10-25 07:33 apex

lrw-r--r-- 1 root root 11 2020-10-25 07:27 bin -> /system/bin
lrw-r—-r—- 1 root root 50 2020-10-25 07:27 bugreports -> ... bugreports
drwxrwx--- 2 system cache 4096 2020-10-25 06:59 cache

drwxr-xr-x 3 root root 0 2020-10-25 07:32 config

lrw-r—--r-- 1 root root 17 2020-10-25 07:27 d -> /sys/kernel/debug
drwxrwx--x 47 system system 4096 2020-10-25 07:35 data

drwx------ 5 root system 100 2020-10-25 07:33 data_mirror

vsoc_x86 64:/ # 1ls -al -Z

dr-xr-xr-x 64 root root u:object_r:cgroup:s0 0 2020-10-25 07:32 acct

drwxr-xr-x 48 root root u:object r:apex mnt dir:s0O 960 2020-10-25 07:33 apex

lrw-r--r-- 1 root root u:object r:rootfs:s0 11 2020-10-25 07:27 bin -> /system/bin
lrw-r--r-- 1 root root u:object r:rootfs:s0 50 2020-10-25 07:27 bugreports -> ...
drwxrwx--- 2 system cache u:object r:cache file:s0 4096 2020-10-25 06:59 cache

drwxr-xr-x 3 root root u:object r:configfs:s0 0 2020-10-25 07:32 config

lrw-r--r—- 1 root root u:object_r:rootfs:s0 17 2020-10-25 07:27 d -> ...
drwxrwx--x 47 system system u:object r:system data root file:sO 4096 2020-10-25 07:35 data

drwx-—----- 5 root system u:object_r:mirror data_file:sO 100 2020-10-25 07:33 data_mirror

;I;He -Z flag enables you to see the security context associated with each file and
directory in the filesystem.

Compare the output of “id” with and without security context information:

vsoc _x86 64:/ # id

uid=0 (root) gid=0 (root)

groups=0 (root),1004 (input),1007 (log),1011 (adb),1015 (sdcard _rw),1028 (sdcard r),3001 (net bt admin)
;3002 (net_bt), 3003 (inet), 3006 (net_bw_stats), 3009 (readproc), 3011 (uhid) context=u:r:su:s0

vsoc x86 64:/ # id -2
u:r:su:s0

2. The filesystem also contains various entries that are related to SELinux and provide
information about some key parts. Here are some examples for you to try:

(]

You can see the SELinux subsystem’s entries in sysfs:
vsoc_x86 64:/ # cd /sys/fs/selinux

vsoc_x86 64:/ # 1ls -al

total O

- YW-YwW-rw- 1 root root 0 2020-10-25 11:52 access

dr-xr-xr-x 2 root root 0 2020-10-25 11:52 avc

dr-xr-xr-x 2 root root 0 2020-10-25 11:52 booleans

—rw-r--r-—- 1 root root 0 2020-10-25 11:52 checkregprot

dr-xr-xr-x 101 root root 0 2020-10-25 11:52 class

——W——————= 1 root root 0 2020-10-25 11:52 commit pending bools
1 0

- IrW—Yrw-rw-— root root 2020-10-25 11:52 context

© OPERSYS INC. 9/20

Android Security Internals

Version - 2025.12

- YW-—YwW-rw- 1 root root 0 2020-10-25 11:52 create
-r——r--r—- 1 root root 0 2020-10-25 11:52 deny unknown
——W——————= 1 root root 0 2020-10-25 11:52 disable
-Yw-r—--r—- 1 root root 0 2020-10-25 11:52 enforce

* You can see the classes of objects that are managed by SELinux in that directory along
with the permissions for each class:

vsoc_x86_64:/ # cd class
vsoc x86 64:/ # 1ls -al

dr-xr—-xr-x

3 root root 0 2020-10-25
dr-xr-xr-x 3 root root 0 2020-10-25
dr-xr-xr-x 3 root root 0 2020-10-25
dr-xr—-xr-x 3 root root 0 2020-10-25
dr-xr—-xr-x 3 root root 0 2020-10-25
dr-xr—-xr-x 3 root root 0 2020-10-25
dr-xr—-xr-x 3 root root 0 2020-10-25
dr-xr-xr-x 3 root root 0 2020-10-25
dr-xr-xr-x 3 root root 0 2020-10-25
dr-xr-xr-x 3 root root 0 2020-10-25
dr-xr—-xr-x 3 root root 0 2020-10-25

11:
11:
11:
11:
11
11:
11:
11:
11
11:
11:

52
52
52
52

:52

52
52
52

:52

52
52

alg socket
appletalk socket
association
atmpvc_socket
atmsvc_socket
ax25 socket
binder

blk file
bluetooth socket
bpf

caif socket

vsoc x86 64:/sys/fs/selinux/class #

- Yr-——r——r——

1s -al binder/perms/

1 root root 0 2020-10-25 11:52 call
-r—--r--r-—- 1 root root 0 2020-10-25 11:52 impersonate
-r--r--r-- 1 root root 0 2020-10-25 11:52 set context mgr
-r--r--r-- 1 root root 0 2020-10-25 11:52 transfer
vsoc x86 64:/sys/fs/selinux/class # ls -al socket/perms
-r--r--r-- 1 root root 0 2020-10-25 11:52 accept
-r—--r--r—-- 1 root root 0 2020-10-25 11:52 append
-r--r--r-- 1 root root 0 2020-10-25 11:52 bind
-r—--r--r—-—- 1 root root 0 2020-10-25 11:52 connect
-r—--r--r—-—- 1 root root 0 2020-10-25 11:52 create
-r—--r--r—-- 1 root root 0 2020-10-25 11:52 getattr
-r—--r--r-- 1 root root 0 2020-10-25 11:52 getopt
-r--r--r-- 1 root root 0 2020-10-25 11:52 ioctl
By exploring this directory, you can see all the types of classes managed by

SELinux/SEAndroid in Android and what types of permissions are associated with

each.

You can also see the initial set of security contexts which are statically defined as part
of the kernel sources and which are used to kickstart the system:

vsoc x86 64:/ # cd
vsoc x86 64:/ # 1ls -al

-r--r--r--

../initial_ contexts

1 root root 0 2020-10-25 11:52 any socket
-r—--r--r-- 1 root root 0 2020-10-25 11:52 devnull
-r—--r--r-- 1 root root 0 2020-10-25 11:52 file
-r—-—-r—--r—-- 1 root root 0 2020-10-25 11:52 kernel
-r—-—-r—--r—-—- 1 root root 0 2020-10-25 11:52 netif

© OPERSYS INC.

10/20

Android Security Internals Version - 2025.12

* You can also see process-specific SELinux information under /proc:
vsoc_x86 64:/ # ps -A | grep system server
system 3279 3219 13834392 275112 do_epoll wait 0 S system server
vsoc_x86 64:/ # 1ls /proc/3279/attr/ -al

2020-10-25 15:11 current
2020-10-25 15:11 exec
2020-10-25 15:11 fscreate
2020-10-25 15:11 keycreate
2020-10-25 15:11 prev
2020-10-25 15:11 sockcreate

—“IYwW—Xrw—rw-—
—“IW—Xrw—rw-—
“IW—Xrw—rw-—
—“YwW—IXrw—rw-—

system system
system system
system system
system system
system system
system system

-r--r—-r--
—“IrW-IW-Irw-

= = N = Y
cNeNoNeoNele

3. If you look into the logcat logs, you'll see that there are several security denial errors related

to the Opersys components that were added by the patches earlier:
vsoc x86 64:/ # logcat | grep -i opersys

10-25 19:14:27.285 0 0 I init : starting service 'vendor.opersys-cuttlefish'...

10-25 19:14:27.310 0 0 I init : ... started service 'vendor.opersys-cuttlefish' has
pid 866

10-25 19:14:27.291 866 866 I OPERSYS : Starting opersys HAL.

10-25 19:14:27.296 866 866 W android.hardwar: type=1300 audit(0.0:134): arch=c000003e

syscall=257 success=no exit=-13 aO0=ffffff9c al=77cldeleb56f7 a2=2 a3=0 items=0 ppid=1
auid=4294967295 uid=1000 gid=1000 euid=1000 suid=1000 £fsuid=1000 egid=1000 sgid=1000 fsgid=1000

tty=(none) ses=4294967295 exe="/apex/com.google.cf.opersys/bin/hw/android.hardware.opersys-
service.cuttlefish" subj=u:r:hal light cuttlefish:s0 key=(null)
10-25 19:14:27.296 211 211 W auditd : type=1327 audit (0.0:134):

proctitle="/apex/com.google.cf.opersys/bin/hw/android.hardware.opersys-service.cuttlefish"

10-25 19:14:27.299 866 866 D opersyshw hal module: FAILED to open /dev/circchar

10-25 19:14:27.299 866 866 D opersyshw hal module: OPERSYS HW with name " opersyshw " has
been initialized

10-25 19:14:27.299 866 866 I OPERSYS : Registering opersys HAL AIDL to ServiceManager.

10-25 19:14:27.335 0 0 E SELinux : avc: denied { add } for pid=866 wuid=1000
name=android.hardware.opersys.IOpersys/default scontext=u:r:hal light cuttlefish:s0
tcontext=u:object r:default android service:s0 tclass=service manager permissive=0

Also, if you check to see if the system service is present you'll see that it isn’t:
vsoc x86 64:/ # service list | grep -i opersys
l|vsoc x86 64:/ #

The SELinux rules won’t permit this system service to operate. There’s therefore no way for it
to start.

4. Compare the output of “dmesg | grep -i opersys” to the output of the “logcat | grep -i
opersys” above. You'll notice that the errors reported aren’t the same. This is consistent with
the fact that the SEAndroid functionality is deeply integrated into the Android user-space and
isn’t limited to just kernel checks.

© OPERSYS INC. 11/20

Android Security Internals Version - 2025.12

Security Context Rule Basics

In this section you will learn how to:
* Investigate and follow SELinux/SEAndroid security contexts
* Understand how security contexts and rules are written
* Create and work with SELinux/SEAndroid rules in a variety of scenarios

1. In the previous exercises we saw that the Opersys system service and relevant
components were’nt getting started due to SELinux issues. Let’s try getting them working by

“cheating”. Let’s disable the SELinux policy checking and restart the framework:
vsoc x86 64:/ # stop
vsoc_x86_64:/ # setenforce 0
vsoc_x86 64:/ # start

Now let’'s check what the logs say and check if the system service was sarted:
vsoc x86 64:/ # logcat | grep -i opersys

10-25 15:18:19.468 2995 2995 I OPERSYS : Starting opersys HAL.

10-25 15:18:19.470 2995 2995 I OPERSYS : Registering opersys HAL AIDL to ServiceManager.

10-25 15:18:19.468 2995 2995 W android.hardwar: type=1300 audit(0.0:306): arch=c000003e
syscall=257 success=yes exit=5 a0=ffffffoc al=7el5626246£f7 az2=2 a3=0 items=0 ppid=1
auid=4294967295 uid=1000 gid=1000 euid=1000 suid=1000 £fsuid=1000 egid=1000 sgid=1000 fsgid=1000

tty=(none) ses=4294967295 exe="/apex/com.google.cf.opersys/bin/hw/android.hardware.opersys-
service.cuttlefish" subj=u:r:hal light cuttlefish:s0 key=(null)

10-25 15:18:19.468 213 213 W auditd : type=1327 audit (0.0:306) :
proctitle="/apex/com.google.cf.opersys/bin/hw/android.hardware.opersys-service.cuttlefish"

10-25 15:18:19.508 0 0 E SELinux : avc: denied { add } for pid=2995 uid=1000
name=android.hardware.opersys.IOpersys/default scontext=u:r:hal light cuttlefish:s0
tcontext=u:object r:default android service:s0 tclass=service manager permissive=1

10-25 15:18:19.509 0 0 I servicemanager:
Caller (pid=2995,uid=1000,sid=u:r:hal light cuttlefish:s0) Found
android.hardware.opersys.IOpersys/default in device VINTF manifest.

10-25 15:18:19.476 2995 2995 I OPERSYS : Success registering opersys HAL AIDL to
ServiceManager.

6-16 15:18:51.876 3168 3168 I SystemServer: Opersys Service

10-25 15:18:51.876 3168 3168 I OpersysService: About to get AIDL HAL

10-25 15:18:51.878 3168 3168 I OpersysService: Opersys AIDL HAL sucessfully retrieved

10-25 15:18:51.878 3168 3168 I OpersysService: System service initialized

10-25 15:18:51.878 3168 3168 I HidlServiceManagement: Trying to get transport of
android.hardware.opersys@2.0::I0persys/default without hwservicemanager

10-25 15:18:51.878 3168 3168 E OpersysService: Unable to get IOpersys interface.

10-25 15:18:51.878 3168 3168 I OpersysService: test() returns 0

10-25 15:18:51.878 2995 2995 E OPERSYS : Inside write

10-25 15:18:51.878 2995 2995 E OPERSYS : Writing: Hello

10-25 15:18:51.878 2995 2995 D opersyshw hal module: OPERSYS HW - write()for 5 bytes called
10-25 15:18:51.879 2995 2995 E OPERSYS : Write returned 5

10-25 15:18:51.911 0 0 E SELinux : avc: denied { find } for pid=3168 uid=1000
name=android.hardware.opersys.IOpersys/default scontext=u:r:system server:s0
tcontext=u:object r:default android service:s0 tclass=service manager permissive=1l

10-25 15:18:51.911 0 0 I servicemanager:
Caller (pid=3168,uid=1000, sid=u:r:system server:s0) Found

android.hardware.opersys.IOpersys/default in device VINTF manifest.

10-25 15:18:51.880 2995 2995 E OPERSYS : Inside read

10-25 15:18:51.880 2995 2995 D opersyshw hal module: OPERSYS HW - read()for 50 bytes called
10-25 15:18:51.880 2995 2995 E OPERSYS : Read returned 5

10-25 15:18:51.880 3168 3168 I OpersysService: read() returns Hello

10-25 15:18:51.914 0 0 E SELinux : avc: denied { add } for pid=3168 uid=1000
name=opersys scontext=u:r:system server:s0 tcontext=u:object r:default android service:s0
tclass=service manager permissive=1

© OPERSYS INC. 12/20

Android Security Internals Version - 2025.12

vsoc x86 64:/ # service list | grep -i opersys
45 android.hardware.opersys.IOpersys/default: [android.hardware.opersys.IOpersys]
160 opersys: [android.os.IOpersysService]

Clearly SELinux isn't happy and complains quite loudly in the logs, but the system service
does actually come up. Still, this isn’'t a viable approach. We’ve now disabled the entirety of
SELinux/SEAndroid and this won’t help us much.

2. Let’s try another approach. Now that we've tried putting the system in permissive mode,
let’s try to retrieve some of the information we gathered in the logs to create SELinux rules that
attempt to fix the problem. First, let’s try to dump the SELinux errors we get into a text file on

the device:
vsoc_x86 64:/ # logcat | grep -i opersys | grep avc > \
> /data/local/tmp/selinux-errors

Now, let's go back to the host, in the AOSP project and try to see how we can use the

“audit2allow” tool to create rules that fix the problem:
S sudo apt install policycoreutils-python-utils
$ adb pull /sys/fs/selinux/policy
$ adb pull /data/local/tmp/selinux-errors
S audit2allow -i selinux-errors -p policy

#============= hal light cuttlefish ==============
allow hal light cuttlefish default android service:service manager add;

#============= sSys temiserver ==============
allow system server default android service:service manager { add find };

As you can see, audit2allow seems able to generate rules to take care of the issues. Now, try

feeding that into your build system and see what happens:
$ audit2allow -i selinux-errors -p policy > \
> device/google/cuttlefish/shared/sepolicy/vendor/my-rules.te
S make

3. As you will have noticed in the previous exercise, the existing ruleset in Android won’t allow
you to just arbitrarily add rules to fix your problems. The “neverallow” rules included by default
by Google preclude blanket additions such as those suggested to you by “audit2allow”. You
need to be more judicious in your changes and look at the errors more closely to see what
needs to be changed. Try the following changes instead:

* Remove the the file you added in the earlier exercise:
$ rm device/google/cuttlefish/shared/sepolicy/vendor/my-rules.te

* Add this snippet to the tail end of
“device/google/cuttlefish/shared/sepolicy/vendor/file_contexts”:

Opersys HAL/HIDL

/vendor/1lib (64) ?/hw/android\.hardware\.opersys@2\.0-impl\.so u:object r:same process hal file:s0
/vendor/1ib64/hw/opersyshw.default.so u:object_r:same_process_hal_file:s0
/dev/circchar u:object r:serial device:s0

* Add this snippet to the tail end of

“device/google/cuttlefish/shared/sepolicy/vendor/hal_light_cuttlefish.te”
allow hal light cuttlefish serial device:chr file rw file perms;

© OPERSYS INC. 13/20

Android Security Internals Version - 2025.12

You will also need to modify the selinux policies in order to allow your system service to
be registered at startup as well as making sure your HAL can be registered. If you fail
to do so then even if all your code is included at build time, the system service will fail
to register and the HAL will fail to start at startup. To allow the registrations, you need
to modify 2 files under the “system/sepolicy” directory:

o “private/service_contexts”

o “prebuilts/api/202404/private/service_contexts”

Both files have to be nearly identical and must be modified to add this entry — follow

convention by inserting it in the alphabetical order:
android.hardware.opersys.IOpersys/default u:object r:hal light service:s0

opersys u:object r:power service:s0

We suggest you copy-paste the same lines into both files at the same place. You need
to modify 2 files because once a version of Android is released by Google then the
core security policies are supposed to be fixed in stone. Yet, here we are messing with
those rules. So we need to act as if we had amended the prebuilt definitions that
Google itself would have published.

Also, note that we are tagging our system service as belonging to the power_service
domain and our HAL to the hal_light_service domain. This is a hack to simplify
SELinux rule definitions. If we wanted to do this properly, we’'d need to define a new
domains called “opersys_service” and “hal_opersys_service” and make modifications
to several other SELinux files. For the moment we’re using an existing definition that
already works.

Compare these additions to those suggested to you by audit2allow. You should notice
that these are far more targeted than the blanket rules suggested by the latter.

Now, rebuild your AOSP, restart Cuttlefish (don’t forget the --noresume) and check your logs.
You shouldn’t see any errors any more. Still, this isn’t a full fix, we are reusing existing
contexts to avoid creating our own.

4. Go back to the added snippets and rework them to define new security contexts for the
driver, the system service and the HAL. Specifically, add:

opersys_device for /dev/circchar (instead of serial_device as above)

opersys_service for the system service (instead of using power_service as above)
hal_opersys_hwservice for the HAL

hal_opersys_service for the HAL daemon (instead of using hal_light_service as above)

You'll also need to add the following files — have a look at other HALs for inspiration:

system/sepolicy/private/hal_opersys.te

system/sepolicy/vendor/hal_opersys_default.te
device/google/cuttlefish/shared/sepolicy/vendor/hal_opersys_cuttlefish.te (instead of
using the light HAL one as above)

You'll also need to modify the “device/google/cuttlefish/guest/hals/opersys/apex_file_contexts”

© OPERSYS INC. 14/20

Android Security Internals Version - 2025.12

to use “hal_opersys_cuttlefish_exec” instead of “hal_light_cuttlefish_exec” as was provided to
you in the tarball.

This is not as easy as it seems. You'll need to look at existing definitions for other devices,
system services and HAL layers. Try starting from the security contexts we suggested you
use in the rules we used in the snippets earlier to get started. You are likely going to need to
change files under both “private/” and “public/” subdirectories under “system/sepolicy/”.

Once you've added your rules, restart Cuttlefish to validate that they work and that no
SELinux errors are generated by any of the Opersys components.

© OPERSYS INC. 15/20

Android Security Internals Version - 2025.12

Security Contexts for New Processes

In this section we will expand on the learning of the previous section with a slightly more
difficult problem to solve since we won’t have existing files from existing processes to start
from to add our own SELinux/SEAndroid rules. Instead, we’ll be adding new processes and
their corresponding rules. Also, the current exercises have less “hand holding” than previous
ones since it's assumed that you've now got a bit of experience with the different parts of the
system. Feel free to refer to the previous exercises as a reference.

1. Get the client and server programs from http://www.linuxhowtos.org/C_C++/socket.htm.
Place both in vendor/ and add the relevant Android.mk files to compile them in your AOSP.
For example, to compile the C server:

* Add a new subdirectory:
$ cd ~/android/android-16.0.0_r2
$ mkdir -p vendor/example-server/

* Add the server.c file to the just-created subdirectory

* In recent versions of Android (including 15), you need to “#include <strings.h>" to the C
file for it to build. Note that there already is a “string.h” (singular) that’s present. That’s
not sufficient nor does it need to be removed or replaced. You really need to add
“strings.h” (plural).

 Make sure “server” is added to a “PRODUCT_PACKAGES” Ilist in
[aosp]/device/google/cuttlefish/shared/phone/device_vendor.mk.

* Make sure you have an appropriate Android.bp within the “example-server” directory to

get your app to build. Here's a sample:
cc_binary {
name: "server",

srcs: ["server.c"],

shared_libs: [
"libcutils",
]I

proprietary: true,

}

Follow a similar technique to add the client binary. For reference, once you rebuild your
AOSP and restart your device, you should in principle be able to have the client and server
interact in the following way:
To start the server (from the device’s command line):
server 4444 &
To connect to the server from the client:
client localhost 4444
The client will prompt you for a message to send to the server and the server will ack
reception.

2. Add an .rc file to the server build to have it get started by init at startup. Rebuild your AOSP

© OPERSYS INC. 16/20

Android Security Internals Version - 2025.12

and check if the server does indeed start. If it doesn’t, check the logs to see what is
happening.

3. You should have noticed in the previous exercise that the init process refuses to start your
server. The reason for this is that there isn’'t a security context defined for it and init won’t
allow a process to be spawned directly from it without a security context. In short, we don’t
want any child of init to get the same security context as initi itself. To fix this problem, you'll
need to add the relevant rules in device/google/cuttlefish/shared/sepolicy/ to:

* Define example_server and example_client domains

* Use an domain_auto_trans() rule (or better yet, an init_daemon_domain()) to transition

from init to example_server when the server is run.
* Enable example_server and example_client domains to communicate over sockets

4. (EXPERIMENTAL) Once your server is running, you can take this a step further and
investigate how a server process can retrieve the client’s SE context and operate on it. In the
present case, modify the server you just added to use libselinux to retrieve the client's SE
context and print it out when client connects.

© OPERSYS INC. 17/20

Android Security Internals Version - 2025.12

Security Contexts for Special Apps

This is a fairly advanced exercise, but it's representative of what you may need to do in real
life. Because it's an advanced exercse, this section also provides a lot less hand-holding that
many of the previous exercises.

1. Modify Opersys stack (see the halext-opersys-cuttlefish-16.0.0_r2-no-se-251216.tar.bz2
contents downloaded above) to start as separate platform-signed persistent APK with its own
user ID:
» put under top-level “vendor/” directory
* android:persistent = true (see packages/services/Telephony)
* Shared USER ID == one in the OEM range (look for “OEM” in
system/core/include/cutils/android_filesystem_config.h)

2. Change SELinux rules to match the persistent app just added instead of a built-in system
service as in the previous exercise.

* Move all non-hidl definitions to device/google/cuttlefish/shared/sepolicy files

* Use seapp_contexts to set domain based on user ID and app package name

© OPERSYS INC. 18/20

Android Security Internals Version - 2025.12

SELinux in the Kernel

This section involves driver and kernel development. |t may or may not apply to the type of
task you need to do. In order to carry out this exercise, you will need to get the kernel sources
for your AOSP along with the sources for the module for the Opersys service that we provided
to you in binary form as part of the package you downloaded at the beginning of this class to
conduct the previous exercises. Refer to the exercises document from our Embedded
Android class (https://www.opersys.com/training/embedded-android-training/) and specifically
to the “Kernel Basics” and “Linux Device Driver” exercise sections.

1. Modify the circular character driver to print the security context SID of the process opening
it. Have a look at:

» struct file's f_security field

* security/selinux/hooks.c

» file_security_struct in security/selinux/include/objsec.h

2. (optional) There's a security_sid_to_context() in security/selinux/include/security.n and
security/selinux/ss/services.c, but it's not exported for modules to use. Try exposing it using
EXPORT_SYMBOL() and use it in your module to convert the SID to a string context and print
it out.

© OPERSYS INC. 19/20

Android Security Internals Version - 2025.12

AOSP User-Space (extra)

The exercises are extra exercises which may or may not be relevant within the context of your
instance of this run of the class. To be discussed with instructor.

1. Generate a pair of adb keys using “adb keygen”

2. Create your own cert for signing the system service APK created in the previous exercises
and integrate that new cert into your AOSP build and SELinux rules. There is some “googling”
involved here.

3. Generate your own release keys for slide 343

4. Generate a full OTA zip file (see slide 345)

5. Make a modification to your AOSP (your choice) and rebuild the AOSP

6. Generate an incremental OTA zip file (see slide 346)

7. Modify your service and client commands from the earlier section to make them updatable
as an Apex.

© OPERSYS INC. 20/20

