
Embedded Android Exercises Version - 2020.07

Hands-On Exercises for

Embedded Android

v. 2020.07

WARNING:
The order of the exercises does not
always follow the same order of the
explanations in the slides. When
carrying out the exercises, carefully
follow the exercise requirements. Do
NOT blindly type the commands or
code as found in the slides. Read
every exercise in its entirety before
carrying out the instructions.

© OPERSYS INC. 1/26

Embedded Android Exercises Version - 2020.07

These exercises are made available to you under a Creative Commons Share-
Alike 3.0 license. The full terms of this license are here:

https://creativecommons.org/licenses/by-sa/3.0/

Attribution requirements and misc.:

• This page must remain as-is in this specific location (page #2), everything
else you are free to change; including the logo :-)

• Use of figures in other documents must feature the below “Originals at”
URL immediately under that figure and the below copyright notice where
appropriate.

• You are free to fill in the space in the below “Delivered and/or customized
by” section as you see fit.

(C) Copyright 2010-2020, Opersys inc.

These exercises created by: Karim Yaghmour

Originals at: www.opersys.com/community/docs

Delivered and/or customized by:

© OPERSYS INC. 2/26

Embedded Android Exercises Version - 2020.07

Class Preparation Reference / Reminder

This section contains material that should have been used prior to class to prepare ahead of
time. It’s provided here as a reference/reminder.

Class Preparation for HiKey board
WARNING: The list of prerequisites for Android development changes over time

1. Install Android Studio:
https://developer.android.com/studio/install
This URL should give you access to all the instructions needed to get this installed and
working.

2. Install the required packages to build Android -- See the "Installing required packages"
instructions for the relevant Ubuntu version here:
https://source.android.com/setup/build/initializing

3. Fetch the AOSP:
We'll be using 10.0 Note that the new lines that start with “>” are printed by the shell. Adding
a “>” to the input you type will break the following commands. Assuming you have a directory
called “android” in your home directory:

$ cd ~/android
$ mkdir android-10.0.0_r3
$ cd android-10.0.0_r3
$ repo init -u https://android.googlesource.com/platform/manifest \
> -b android-10.0.0_r3
$ repo sync

Note that fetching the sources is a fairly lengthy process.

4. Patch 10.0.0_r3 to fix it for HiKey board. These instructions need to be done in the root of
the AOSP just downloaded above:

$ wget http://opersys.com/downloads/hikey-10.0.0_r3-191023.patch
$ patch -p1 < hikey-10.0.0_r3-191023.patch

5. Make sure you have “mtools” installed:
$ sudo apt-get install mtools

6. Get the kernel:

© OPERSYS INC. 3/26

Embedded Android Exercises Version - 2020.07

a. Create directory for working on kernel -- assuming we're at the top-level of the
AOSP:
$ mkdir kernel; cd kernel
b. Get the kernel:
$ git clone https://android.googlesource.com/kernel/hikey-linaro
$ cd hikey-linaro
$ git checkout -b android-hikey-linaro-4.9 \
> origin/android-hikey-linaro-4.9
$ git checkout 7c09ed7b46a4505b0aa53a3da683461a45257d9f

c. We'll reconfigure and build the kernel during the exercises.

7. Build the AOSP:
$ cd ~/android/10.0.0_r3
$. build/envsetup.sh
$ lunch hikey-eng
$ make -j8

8. Ensure that the build finishes successfully.

9. Flash your board with your AOSP:
(a) Plug your board into the power jack and your computer through the USB cable. The

board already has a system image on it that it'll boot with.
(b) Make sure your workstation recognizes the device and gives you access to it. Have a

look at the instructions here for more information:
https://developer.android.com/studio/run/device.html#setting-up

(c) Put the board in “fastboot” mode:
$ cd ~/android/aosp-10.0.0_r3
$. build/envsetup.sh
$ lunch hikey-eng
$ adb reboot bootloader

(d) The board should reboot and you should be able to see it using this command –
example output provided:
$ fastboot devices
CB9DAE00034D5B3 fastboot

(e) Reflash with your own images:
$ fastboot flashall
--
Bootloader Version...: 0.7
Baseband Version.....: 0.7
Serial Number........: CB9DAE00034D5B3
--
Checking 'product' OKAY [0.000s]
Checking 'version-bootloader' OKAY [0.001s]

© OPERSYS INC. 4/26

Embedded Android Exercises Version - 2020.07

Sending 'boot' (8790 KB) OKAY [0.532s]
Writing 'boot' OKAY [0.931s]
Sending sparse 'system' 1/9 (129908 KB) OKAY [7.900s]
Writing 'system' OKAY [12.966s]
Sending sparse 'system' 2/9 (128648 KB) OKAY [5.420s]
Writing 'system' OKAY [12.892s]
Sending sparse 'system' 3/9 (129044 KB) OKAY [5.261s]
Writing 'system' OKAY [12.939s]
Sending sparse 'system' 4/9 (128648 KB) OKAY [6.020s]
Writing 'system' OKAY [12.891s]
Sending sparse 'system' 5/9 (129044 KB) OKAY [6.025s]
Writing 'system' OKAY [12.942s]
Sending sparse 'system' 6/9 (128648 KB) OKAY [5.143s]
Writing 'system' OKAY [12.895s]
Sending sparse 'system' 7/9 (129044 KB) OKAY [5.306s]
Writing 'system' OKAY [12.933s]
Sending sparse 'system' 8/9 (128648 KB) OKAY [5.805s]
Writing 'system' OKAY [12.898s]
Sending sparse 'system' 9/9 (130784 KB) OKAY [5.670s]
Writing 'system' OKAY [13.104s]
Sending 'vendor' (25708 KB) OKAY [1.223s]
Writing 'vendor' OKAY [2.562s]
Rebooting OKAY [0.001s]
Finished. Total time: 174.342s

(f) Check that your device booted properly into Android mode:
$ adb devices
List of devices attached
CB9DAE00034D device

(g) Log into your device:
$ adb shell
hikey:/ #

(h) Check that the build description matches your build date/time:
hikey:/ # cat system/build.prop | grep -i description
Do not try to parse description, fingerprint, or thumbprint
ro.build.description=hikey-eng 10 QP1A.190711.020.C3 eng.karim.20191110.180018 test-keys

Class Preparation for emulator
WARNING: The list of prerequisites for Android development changes over time

1. Install Android Studio:
https://developer.android.com/studio/install
This URL should give you access to all the instructions needed to get this installed and
working.

2. Install the required packages to build Android -- See the "Installing required packages"
instructions for the relevant Ubuntu version here:

© OPERSYS INC. 5/26

Embedded Android Exercises Version - 2020.07

https://source.android.com/setup/initializing

3. Fetch the AOSP:
We'll be using Android 10 Note that the new lines that start with “>” are printed by the shell.
Adding a “>” to the input you type will break the following commands. Assuming you have a
directory called “android” in your home directory:

$ cd ~/android
$ mkdir android-10.0.0_r9
$ cd android-10.0.0_r9
$ repo init -u https://android.googlesource.com/platform/manifest \
> -b android-10.0.0_r9
$ repo sync

Note that fetching the sources is a fairly lengthy process.

4. Build the AOSP:
$ cd ~/android/android-10.0.0_r9
$. build/envsetup.sh
$ lunch aosp_x86_64-eng
$ make -j8

5. Give the AOSP a spin:
From the same directory where you build the AOSP, run the emulator:

$ emulator &

At this point, an emulator should start with your custom-built Android running inside.

© OPERSYS INC. 6/26

Embedded Android Exercises Version - 2020.07

Kernel Basics

1. Check kernel version on the device (Shell into the device and type “cat /proc/version”)

2. Get the kernel and associated toolchain (if needed) – if you haven't already done so:
a. Create directory for working on kernel -- assuming we're at the top-level of the
AOSP:

$ mkdir kernel; cd kernel
b. Get the kernel itself – for Hikey:

$ git clone https://android.googlesource.com/kernel/hikey-linaro
$ cd hikey-linaro
$ git checkout -b android-hikey-linaro-4.9 \
> origin/android-hikey-linaro-4.9
$ git checkout 7c09ed7b46a4505b0aa53a3da683461a45257d9f

b. Get the kernel itself – for emulator:
$ git clone https://android.googlesource.com/kernel/goldfish
$ cd goldfish
$ git checkout android-goldfish-4.4-dev

3. Make sure you have libncurses5-dev installed:
$ sudo apt-get install libncurses5-dev

4. For the Hikey board:
Configure the kernel for the hikey board:

$ cd ~/android/aosp-10.0.0_r3/kernel/hikey-linaro
$ make ARCH=arm64 hikey_defconfig

Reconfigure the kernel to enable CONFIG_TI_ST and CONFIGT_ST_HCI, and disable
CONFIG_WL18XX and CONFIG_WLCORE:

$ make ARCH=arm64 menuconfig

4. For the emulator:
Reconfigure the kernel to make sure support for modules and module unloading is enabled.
You don't need to enable forced module unloading.

$ cd kernel/goldfish
$ make ARCH=x86 x86_64_ranchu_defconfig
$ make ARCH=x86 menuconfig

5.For the Hikey board:
Rebuild your kernel. To rebuild the kernel, you need to do the following from the “kernel/hikey-
linaro/” directory – after having made sure you had run the “. build/envsetup.sh” and “lunch

© OPERSYS INC. 7/26

Embedded Android Exercises Version - 2020.07

hikey-eng” commands at the top of the AOSP directory:
$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-android- -j8

5. For the emulator:
Rebuild, replace kernel, reboot. To rebuild the kernel, you need to do the following from the
“kernel/goldfish/” directory:

$ make ARCH=x86 CROSS_COMPILE=x86_64-linux-android- bzImage -j8

6. For the Hikey board:
Replace the default kernel and device tree blob (DTB) in the AOSP. In order for the AOSP to
take your newly built kernel into account, you'll need to do this -- again assuming that you've
run the appropriate “. build/envsetup.sh” and “lunch” from the toplevel:

$ croot
$ cd device/linaro/hikey-kernel/
$ cp hi6220-hikey.dtb-4.9 hi6220-hikey.dtb-4.9-orig
$ cp Image.gz-dtb-4.9 Image.gz-dtb-4.9-orig
$ croot
$ cd kernel/hikey-linaro
$ cp arch/arm64/boot/dts/hisilicon/hi6220-hikey.dtb \
> ../../device/linaro/hikey-kernel/hi6220-hikey.dtb-4.9
$ cp arch/arm64/boot/Image.gz-dtb \
> ../../device/linaro/hikey-kernel/Image.gz-dtb-4.9

6. For the emulator:
In order for the AOSP to take your newly built kernel into account, you'll need to do this -- the
following assuming that you've run the appropriate “. build/envsetup.sh” and “lunch” from the
toplevel:

$ croot
$ cd prebuilts/qemu-kernel/x86_64/4.14/
$ cp kernel-qemu2 kernel-qemu2-orig
$ croot
$ cp kernel/goldfish/arch/x86/boot/bzImage \
> prebuilts/qemu-kernel/x86_64/4.14/kernel-qemu2
$ rm out/target/product/generic_x86_64/kernel-ranchu
$ make -j8

7. For the Hikey board:
Rebuild your AOSP to take the new kernel into account:

$ croot
$ make -j8

7. For the emulator:
Restart the emulator and check the new kernel's version (“cat /proc/version”):

© OPERSYS INC. 8/26

Embedded Android Exercises Version - 2020.07

$ emulator -no-cache &
$ adb shell cat /proc/version

8. For the Hikey board:
Reflash your board with the new kernel:

$ adb reboot bootloader
$ fastboot flash boot
$ fastboot reboot

9. For the Hikey board:
Log back into your device and check the new kernel's version (“cat /proc/version”). It should
match the time/date that you just built it on.

© OPERSYS INC. 9/26

Embedded Android Exercises Version - 2020.07

AOSP Fix Ups

1. Copy the following file -- the bit.ly link is just a URL shortnening service:
http://www.opersys.com/downloads/IOpersysService.aidl

OR
http://bit.ly/11CWgUM

to this location in your AOSP:
[aosp]/frameworks/base/core/java/android/os/

2. Add the highlighted line to your [aosp]/frameworks/base/Android.bp :
 "core/java/android/os/IPowerManager.aidl",
 "core/java/android/os/IOpersysService.aidl",
 "core/java/android/os/IRecoverySystem.aidl",

3. Modify your [aosp]/system/core/libcutils/fs_config.cpp to add the highlighted lines:
 { 00755, AID_ROOT, AID_ROOT, 0, "bin/*" },
 { 00640, AID_ROOT, AID_SHELL, 0, "fstab.*" },
 { 00755, AID_ROOT, AID_ROOT, 0, "system/glibc/lib/*" },
 { 00755, AID_ROOT, AID_ROOT, 0, "system/glibc/bin/*" },
 { 00750, AID_ROOT, AID_SHELL, 0, "init*" },
 { 00750, AID_ROOT, AID_SHELL, 0, "sbin/*" },

4. Rebuild your AOSP and reflash your device if needed. We will discuss the need for these
changes later in class. We're doing them now (end of 1st day) to avoid having to wait for the
builds to finish during class.

© OPERSYS INC. 10/26

Embedded Android Exercises Version - 2020.07

Linux Root Filesystem

1. Get and install the Opersys Embedded Linux Workspace:
For ARM:
http://bit.ly/28Rz54O -- the last letter here is capital “O”, not zero.
or
https://drive.google.com/file/d/0B0dp197y8Ga7ejI4ZWFIVHh0LVE

For x86-64:
http://bit.ly/1MPEya9
or
https://drive.google.com/file/d/0B0dp197y8Ga7VVZjSmEzak9aSFE

2. Customize the workspace script in the extracted directory to match your own paths. The
script should be called “devbb” or “devx86”, or a similar name.

3. Run the the environment script:
For ARM:
$. devbb

For x86:
$. devx86

4. Create yourself a root filesystem that includes the glibc shared libraries as in slides 165
and 171, except for the “strip” command.

5. Make sure you have libncurses5-dev installed:
$ sudo apt-get install libncurses5-dev

6. For BusyBox:
• For ARM:

◦ Download BusyBox 1.20.2 from busybox.net/downloads/ into sysapps
• For x86:

◦ Download BusyBox 1.26.2 from busybox.net/downloads/ into sysapps
• Extract BusyBox using the “tar” command
• Configure BusyBox per the slides:

© OPERSYS INC. 11/26

Embedded Android Exercises Version - 2020.07

◦ “Busybox Settings”->”Cross Compiler prefix” (notice the trailing dash):
▪ ${TARGET}-

◦ “Busybox Settings”->“BusyBox installation prefix”:
▪ ${PRJROOT}/rootfs

• Build BusyBox per the slides:
◦ $ make -j8

• Install BusyBox per the slides
◦ $ make install

© OPERSYS INC. 12/26

Embedded Android Exercises Version - 2020.07

Native Android User-Space

Preamble:
• For every exercise, it's implied that you should build the AOSP and reflash your

device or restart the emulator after each exercise to check that your changes
have indeed been correctly reflected in your newly modified AOSP.

• Once built, the AOSP will have an [aosp]/out/target/product/[product_name]/ directory
containing a directory and a corresponding image for:
◦ The boot image (boot.img)
◦ The root filesystem (root/ and ramdisk.img)
◦ /system (system/ and system.img)
◦ /data (data/ and userdata.img)

• If you modify the linux root filesystem created earlier, you will need to erase the “rootfs-
glibc” stub file from [aosp]/out/target/product/[product_name]/system/glibc/ to force the
AOSP's build system to regenerate the system image.

• Do NOT get rid of [aosp]/out/target/product/[product_name]/ itself or any of the parent
directories. If you do so, you will have to wait for the AOSP to rebuild itself. Only get
rid of the previously-mentioned file on a case-by-case basis as needed.

1. Modify AOSP build system to copy content of your rootfs to its default system image. You
will need to:

• Create [aosp]/rootfs-glibc
• Create a stub file under that directory – every time you “touch” that file, it'll force a

rebuild of this subdirectory:
$ touch [aosp]/rootfs-glibc/stub

• Do one of the following – based on instructor guidelines:
◦ For emulator only -- Download the pre-built x86 glibc rootfs found here:

▪ http://www.opersys.com/downloads/rootfs-200727.tar.bz2
◦ Copy your glibc rootfs (from “the Linux Root Filesystem” section) under

[aosp]/rootfs-glibc:
$ cp -a ${PRJROOT}/rootfs [aosp]/rootfs-glibc

• Download this file as [aosp]/rootfs-glibc/Android.mk
 http://www.opersys.com/downloads/glibcroot-Android-sys.mk

OR
 http://bit.ly/T4H9V9

• Add "rootfs-glibc" to [aosp]/device/linaro/hikey/device-common.mk for the Hikey board

© OPERSYS INC. 13/26

Embedded Android Exercises Version - 2020.07

or [aosp]/build/target/product/base_system.mk for the emulator:
PRODUCT_PACKAGES += rootfs-glibc

• Add an entry for “lib64” to the SELinux rules in
[aosp]/system/sepolicy/private/file_contexts and
[aosp]/system/sepolicy/prebuilts/api/29.0/private/file_contexts:

For kernel modules
/lib(/.*)? u:object_r:rootfs:s0
/lib64(/.*)? u:object_r:rootfs:s0

2. Using the client and server programs from http://www.linuxhowtos.org/C_C++/socket.htm,
compile the server against Bionic and the client against glibc.
To have a the C server build against Bionic:

• Add a new subdirectory: [aosp]/frameworks/base/cmds/server
• Add the server.c file to the just-created subdirectory
• You may need to add “#include <strings.h>” to the C file for it to build
• Make sure “server” is added to a “PRODUCT_PACKAGES” list in

[aosp]/build/target/product/base_system.mk.
• Make sure you have an appropriate Android.mk within

[aosp]/frameworks/base/cmds/server to get your app to build. Here's a sample:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SRC_FILES:= \
server.c

LOCAL_SHARED_LIBRARIES := \
libcutils

LOCAL_MODULE:= server

include $(BUILD_EXECUTABLE)

To have the C client build against glibc (if you are using a prebuilt rootfs then this client has
already been built for you):

• Place the C client into the [aosp]/rootfs-glibc/rootfs/bin/
• Use the toolchain that's part of the glibc-based rootfs we had earlier:

◦ For ARM:
${PRJROOT}/tools/arm-unknown-linux-gnueabi/bin/arm-unknown-linux-gnueabi-gcc -o client client.c

◦ For x86
${PRJROOT}/tools/x86_64-unknown-linux-gnu/bin/x86_64-unknown-linux-gnu-gcc -o client client.c

To start the server (from the device’s command line):
server 4444 &

To connect to the server from the client:
/system/glibc/bin/client localhost 4444

© OPERSYS INC. 14/26

Embedded Android Exercises Version - 2020.07

System Server

1. Use the following tools to observe the System Server's behavior: logcat, dumpsys,
dumpstate

2. Use strace to monitor the operation of dumpsys. You should see dumpsys using ioctl() to
talk to the binder driver (/dev/binder).

3. Add your own system service that prints out a message to the logs when it is called.
• You can use the templates from the following tarball to copy-n-paste:

http://opersys.com/downloads/systemserver-samples-180219.tar.bz2.
• Make sure you “touch” any file you copy to update its timestamp, otherwise it's likely to

get ignored at the next “make”.
• If you copy and paste from the slides, make sure the pasting doesn't introduce “magic

characters” that will cause the compiler to complain about your code.
• You'll need to modify the selinux policies in order to allow your system service to be

registered. To do so, modify the “system/sepolicy/private/service_contexts” and
“system/sepolicy/prebuilts/api/29.0/private/service_contexts” files to add this entry:
opersys u:object_r:serial_service:s0

4. Build the AOSP and use “logcat” to check that your service is started upon system startup.

5. Use “service call” to invoke your system service from the command line and check the
logcat to see that it's been properly called:

service call opersys 3 i32 412341

6. Implement the dump() function in your system service to allow dumpsys to poke it for
status. The prototype is:

 @Override
 public void dump(FileDescriptor fd, PrintWriter pw, String[] args) {
 ...
 }

© OPERSYS INC. 15/26

Embedded Android Exercises Version - 2020.07

Linux Device Driver

1. We will use the following driver for the exercises:
http://www.opersys.com/downloads/circular-driver-111207.tar.bz2

This drivers implements a circular buffer over the read/write file-ops. Refer to LDD3 slide-set
for both code examples and a Makefile. The driver doesn't implement blocking/waking
semantics. When there's no content available, it returns 0 bytes. Have a look at the driver at
the following address as another driver exxample:
http://tldp.org/LDP/lkmpg/2.6/html/x569.html
LDD3 is here: http://lwn.net/Kernel/LDD3/

For the Hikey / 10.0:
• Put the driver's directory in [aosp]/device/linaro/hikey/
• This driver uses misc_register() instead of register_chrdev() as it will register your char

dev and fire off a hotplug event.
• Building the module:

$. build/envsetup.sh
$ lunch hikey-eng
$ cd device/linaro/hikey/circular-driver/
$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-androidkernel-

• To have the circular-driver.ko included in the final image, edit the
device/linaro/hikey/device-common.mk to add the following:
PRODUCT_COPY_FILES += \

device/linaro/hikey/circular-driver/circular-char.ko:system/modules/circular-char.ko
• To have the module loaded at startup, modify an init.rc file to get it loaded. The board-

specific file in the case of the Hikey is device/linaro/hikey/init.common.rc:
on post-fs
 insmod /system/modules/circular-char.ko

• To have ueventd create the proper entry in /dev at runtime, you'll need to modify a
ueventd.rc to have a proper entry for the module. You can modify the
device/linaro/hikey/ueventd.common.rc file to add:
/dev/circchar 0666 system system

• To allow init to load the module at startup, you'll need to modify the selinux policies to
allow the loading of the module. To do so, add the following rules before the
“neverallow” rules in the “system/sepolicy/public/vendor_init.te” and the
“system/sepolicy/prebuilts/api/29.0/public/vendor_init.te” files:
allow vendor_init self:capability sys_module;
allow vendor_init system_file:system module_load;
allow vendor_init system_file:file { r_file_perms };

© OPERSYS INC. 16/26

http://lwn.net/Kernel/LDD3/

Embedded Android Exercises Version - 2020.07

• To allow the file to be accessible by the system server, you'll need to modify the selinux
policies to have a rule for the /dev entry. To do so, add “/dev/circchar” to the list of files
allowed by the system server in the “system/sepolicy/private/file_contexts” and “system/
sepolicy/prebuilts/api/29.0/private/file_contexts” files:
/dev/circchar u:object_r:tty_device:s0

For the emulator / 10.0:
• Put the driver's directory in [aosp]/device/generic/goldfish/
• This driver uses misc_register() instead of register_chrdev() as it will register your char

dev and fire off a hotplug event.
• Building the module:

$ cd device/generic/goldfish/circular-driver
$ make ARCH=x86 CROSS_COMPILE=x86_64-linux-android-

• To have the circular-driver.ko included in the final image, edit the
device/generic/goldfish/x86_64-vendor.mk to add the following:
PRODUCT_COPY_FILES += \
 device/generic/goldfish/circular-driver/circular-char.ko:/vendor/lib/modules/circular-
char.ko

• To have the module loaded at startup, modify an init.rc file to get it loaded. The board-
specific file in the case of the emulator is device/generic/goldfish/init.ranchu.rc:
on post-fs
 insmod /vendor/lib/modules/circular-char.ko

• To have ueventd create the proper entry in /dev at runtime, you'll need to modify a
ueventd.rc to have a proper entry for the module. You can modify the
device/generic/goldfish/ueventd.ranchu.rc file to add:
/dev/circchar 0666 system system

• To allow init to load the module at startup, you'll need to modify the selinux policies to
allow the loading of the module. To do so, add the following rules before the
“neverallow” rules in the “system/sepolicy/public/vendor_init.te” and the
“system/sepolicy/prebuilts/api/29.0/public/vendor_init.te” file:
allow vendor_init self:capability sys_module;
allow vendor_init vendor_file:system module_load;
allow vendor_init system_file:file { r_file_perms };

• To allow the file to be accessible by the system server, you'll need to modify the selinux
policies to have a rule for the /dev entry. To do so, add “/dev/circchar” to the list of files
allowed by the system server in the “system/sepolicy/private/file_contexts” and “system/
sepolicy/prebuilts/api/29.0/private/file_contexts” file:
/dev/circchar u:object_r:tty_device:s0

© OPERSYS INC. 17/26

Embedded Android Exercises Version - 2020.07

2. (Skip this is you've followed board-specific instructions in the previous exercise.) If you
haven't already modified the build system and the startup configuration files to load the driver
automatically as above, load your driver into your custom-built kernel on your emulator or
device using adb to push the “.ko” to “/data/local” temporarily. “/data” is mounted from an
image which is persisted to disk at runtime. That image, however, will get destroyed when the
AOSP is used to generate an SDK.

3. Use “cat” and “echo” to “read” and “write” to your “device”. For example, “cat /dev/foo” will
read from the device and “echo string > /dev/foo” will write to it.

© OPERSYS INC. 18/26

Embedded Android Exercises Version - 2020.07

Hardware Abstraction Layer / HIDL

1. We will use the code from the following tarball for this hands-on session:
For the Hikey board:

http://opersys.com/downloads/libhw-opersys-hikey-10.0-191113.tar.bz2
For the emulator:

http://opersys.com/downloads/libhw-opersys-goldfish-10.0-191120.tar.bz2

We will go through the files in this archive in class and the specific instructions to follow. Note
though that it's important to “touch” any file you copy to update its timestamp, otherwise it's
likely to get ignored at the next “make”.

2. To test your additions, you should be able to write and read into the driver through the
system service’s AIDL interface and correspondingly read and write from the driver. For
example:

service call opersys 2 s16 foobar
Result: Parcel(00000000 00000006 '........')
cat /dev/circchar
foobar
echo test-string > /dev/circchar
service call opersys 1 i32 40
Result: Parcel(
 0x00000000: 00000000 0000000c 00650074 00740073 '........t.e.s.t.'
 0x00000010: 0073002d 00720074 006e0069 000a0067 '-.s.t.r.i.n.g...'
 0x00000020: 00000000 '.... ')

3. Implement a dump() function within your system server in order to allow the dumpsys utility
to retrieve the number of calls read() and write() having been made since system startup.

© OPERSYS INC. 19/26

Embedded Android Exercises Version - 2020.07

Stack Extension Exercises

1. Modify the IOpersysService AIDL and the system service deriving from it to add the
following class:

void clearBuffer(), which empties the circular buffer
boolean isThereContent(), which tells the caller whether there's content to read
long getLastWriteTime(), which returns the time at which the last write happens
int getReadStat(), which returns the number of read() calls made to the driver
int getWriteStat(), which returns the number of write() calls made to the driver
void setBufferToChar(char), which sets the buffer's content to a char value

Stub the implementations to “keep the compiler happy” and restart the AOSP build. We do
this in the beginning because this change will cause a framework rebuild which will itself
trigger the rebuild of quite a few components. Since this take a bit of time, it’s best to start by
making this disruptive change first and then proceed in parallel to the rest of the changes
while the build continues.

2. Implement the ioctl() call of the driver to:
a. Zero out the content of the circular buffer
b. Poll the driver to see if there's new data in the buffer
c. Get last write time-stamp
d. Get the number of calls to read()
e. Get the number of calls to write()
f. Set the entire content of the buffer to a given character value

Refer to the Linux Device Drivers book linked to earlier for a reference on how to implement
ioctl() calls. Note that you'll need to implement unlocked_ioctl() instead of ioctl() in the file
operations struct.

3. Return to the system service and now actually implement the calls we had stubbed earlier
with implementations that communicate with the JNI layer and thereon the rest of stack
underneath to connect the system service to the driver you just extended.

4. Add a “void enableIntentOnContent()” and “void disableIntentOnContent()” to the
OpersysService that makes it so that the service periodically polls the driver to see if it's got
new content and broadcasts a new Intent when new content is found. Use the driver's ability
to give you the time of the last write to avoid sending an Intent twice for the same addition to

© OPERSYS INC. 20/26

Embedded Android Exercises Version - 2020.07

the buffer.

5. Use the “service call” command to call on “enableIntentOnContent()” and catch the Intent
with a BroadcastReceiver inside an app.

© OPERSYS INC. 21/26

Embedded Android Exercises Version - 2020.07

Platform Internals Exercises

© OPERSYS INC. 22/26

Embedded Android Exercises Version - 2020.07

1. Have the Brain App be a standalone app in packages/apps (in the case of the emulator) or
device/ti/beaglebone/ (in the case of the Beaglebone.) To make sure the app is part of
PRODUCT_PACKAGES, you'll need to modify build/target/product/generic_no_telephony.mk
(in the case of the emulator) and device/ti/beaglebone/beaglebone.mk (in the case of the
emulator). Follow the Phone app example on how to make your app a standalone app that
has a system service. You can use your existing system service as a basis for your new
system service in the Brain App.
2. The system service in the brain app should maintain an internal buffer which is fed from the
buffer your circular driver has; more on this below. The API of the system service in the brain
app should be:

String read(), which returns what's in its buffer
int write(), which writes a string to the system service's internal buffer
void clearBuffer(), which empties the circular buffer
boolean isThereContent(), which tells the caller whether there's content to read
long getLastWriteTime(), which returns the time at which the last write happens
int getReadStat(), which returns the number of read() calls made to the system service
int getWriteStat(), which returns the number of write() calls made to the system service
void setBufferToChar(char), which sets the buffer's content to a char value
void enableIntentOnContent(), makes it so that system service sends an intent when
there's new data
void disableIntentOnContent(), disables the intent on data
void registerCallbackInterface(), to allow an app to register a callback remote binder
interface
void unregisterCallbackInterface(), to deregister the remote callback interface

3. Create a thread in your system service that periodically reads the driver's buffer to fill the
buffer maintained by the system service. Instead of using the HAL to read from the driver, put
the code that was in opersyshw_qemu.c (in the case of the emulator) or
opersyshw_beaglebone.c (in the case of the BeagleBone) inside a C library that is called
through JNI by your system service. You'll have to get that library loaded by your app. Have
a look at the Hello JNI sample in the NDK.
4. Extend the Status Bar app to have a new overlay window such as the one displayed by
LoadAverageService.java; copy the latter and start from there. Have your new addition
connect to the system service in the Brain App and register a callback interface to allow the
system service to call the service back with new data added to the buffer. When new data
comes in, have your Status Bar extension display the new data as an overlay as the example
in the previous page shows. Have a look at the registerStatusBar() call part of the

© OPERSYS INC. 23/26

Embedded Android Exercises Version - 2020.07

IStatusBarService.aidl in frameworks/base/core/java/com/android/internal/statusbar/ for an
example of how a system service can allow a caller to register a callback interface.
5. Create a library that exposes the system service's API through a Java library that is
exposed to regular applications using an SDK add-on. Import the SDK add-on to your SDK
and create a sample application with Android Studio that can read() and write() to your system
service through the add-on.
6. Create a native daemon that listens to socket connections from the system service and also
receives remote connections from a host utility. The commands received from the system
service should be (assuming a text based interface like the one between installd and the
Package Manager):

“get_host_message”, to retrieve any messages buffered in the daemon from the host
utility
“new_data_in_buffer”, for sending new messages added to the system service' buffer

The system service should connect to the daemon through a Unix domain socket like the
ones in /dev/socket/ while the host utility will connect to the daemon through a classic IP port;
pick a port number of your choice. You'll want to extend the thread created earlier in the
system service to periodically poll the daemon for host messages.
7. Create a utility for using on the host to:

a. read new messages available from the daemon on the target
b. push new messages to the daemon on the target

At the end of this, you should be able to push a new message from the utility on the host and
have it display to the screen through the extension to the status bar.

© OPERSYS INC. 24/26

Embedded Android Exercises Version - 2020.07

Extra Exercises

1. Mark Zygote as “disabled” in init.rc and start it by hand after boot using the “start”
command.
2. Modify the bootloader parameters to have the system boot remotely from the network.

a. Create a “uEnv.txt” file on the “boot” partition of the micro-SD card to provide
appropriate values for the “net_boot” command to operate properly. You'll likely need to
set “serverip” to your host's IP address. You'll likely also want to set “rootpath” to the
location of your rootfs. To load environment variables from “uEnv.txt”, type:
U-Boot# mmc rescan
U-Boot# run loadbootenv
U-Boot# run importbootenv
b. Create a U-Boot image of the kernel built earlier
c. Configure your host for serving TFTP requests
d. Use TFTP to download image to target
e. Boot with image
f. Configure your host and your target so that the target's configuration is obtained at
boot time via DHCP and the rootfs is mounted on NFS.

3. Extend the “svc” command in frameworks/base/svc to make it capable of talking to the
Opersys system service, thereby allowing you to communicate with that system service
straight from the command-line. “svc” already implements commands for a couple of system
services (PowerManager, ConnectivityManager, TelephonyManager, and WifiManager).
4. Create app w/ EditText and Button that sends text entered in the text box all the way down
to the driver.
5. Create an app that acts as the home screen. You'll to have an activity with the following set
of filters:
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.HOME"/>
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>

Have a look at development/samples/Home for an example basic home app. You're not
expected to have a full app allowing the starting of other apps. Just make sure you can get a
“HelloWorld” to kick in right after boot up.
6. Implement a C-built system service and a corresponding C command-line utility that use
Binder to communicate. Have a look at:
frameworks/base/libs/surfaceflinger_client/ISurfaceComposer.cpp frameworks/base/services/

© OPERSYS INC. 25/26

Embedded Android Exercises Version - 2020.07

surfaceflinger/SurfaceFlinger.cpp frameworks/base/core/jni/android_view_Surface.cpp

© OPERSYS INC. 26/26

