
Embedded Android Exercises Version - 2021.11

Hands-On Exercises for

Embedded Android

v. 2021.11

WARNING:
The order of the exercises does not
always follow the same order of the
explanations in the slides. When
carrying out the exercises, carefully
follow the exercise requirements. Do
NOT blindly type the commands or
code as found in the slides. Read
every exercise in its entirety before
carrying out the instructions.

© OPERSYS INC. 1/45

Embedded Android Exercises Version - 2021.11

These exercises are made available to you under a Creative Commons Share-
Alike 3.0 license. The full terms of this license are here:

https://creativecommons.org/licenses/by-sa/3.0/

Attribution requirements and misc.:

• This page must remain as-is in this specific location (page #2), everything
else you are free to change; including the logo :-)

• Use of figures in other documents must feature the below “Originals at”
URL immediately under that figure and the below copyright notice where
appropriate.

• You are free to fill in the space in the below “Delivered and/or customized
by” section as you see fit.

(C) Copyright 2010-2021, Opersys inc.

These exercises created by: Karim Yaghmour

Originals at: www.opersys.com/community/docs

Delivered and/or customized by:

© OPERSYS INC. 2/45

Embedded Android Exercises Version - 2021.11

Class Preparation Reference / Reminder

This section contains material that should have been used prior to class to prepare ahead of
time. It’s provided here as a reference/reminder.

Class Preparation for Cuttlefish

1. Install Android Studio:
https://developer.android.com/tools/studio/index.html
This URL should give you access to all the instructions needed to get this
installed and working.

2. Install the required packages to build Android:
See the "Installing required packages" instructions for the relevant Ubuntu
version here: http://source.android.com/source/initializing.html

3. Make sure you have the “repo” tool available:
See the “Installing Repo” here: https://source.android.com/setup/develop
You may need to log out and back in if the “~/bin” directory wasn’t already in
your path.

4. Fetch the AOSP:
We'll be using 12.0.0 Note that the new lines that start with “>” are printed by
the shell. Adding a “>” to the input you type will break the following
commands. Assuming you have a directory called “android” in your home
directory:
$ cd ~/android
$ mkdir android-12.0.0_r2
$ cd android-12.0.0_r2
$ repo init -u https://android.googlesource.com/platform/manifest \
> -b android-12.0.0_r2
$ repo sync

Note that fetching the sources is a fairly lengthy process.

© OPERSYS INC. 3/45

Embedded Android Exercises Version - 2021.11

5. Check that you got the right AOSP version:
$ cat .repo/manifests/default.xml | grep revision
 <default revision="refs/tags/android-12.0.0_r2"

Make sure it says “android-12.0.0_r2” in this output.

6. Download the Android GKI kernel:
Note that we’re just downloading the kernel for now, we aren’t building it.
a. Create directory for working on kernel – assuming this is outside your the top-level of the
AOSP:
$ cd ~/android/
$ mkdir android12-5.10-kernel
$ cd android12-5.10-kernel

b. Get the kernel itself and its tools:
$ repo init -u https://android.googlesource.com/kernel/manifest \
> -b common-android12-5.10
$ repo sync

7. Download and setup the Cuttlefish tools. Follow the instructions at the
following URL to install the tools needed to control Cuttlefish instances:
https://android.googlesource.com/device/google/cuttlefish/

8. Build the AOSP:
Return to the AOSP directory and build it. We use “-j32” as 2X the number of
CPUs (assumed 16 here as seen by typing “nproc” on the command line).
Generally on a modern AOSP, you shouldn’t need to specify “-jX”, it’ll be
automatically figured out.
$ cd ~/android/android-12.0.0_r2
$. build/envsetup.sh
$ lunch aosp_cf_x86_64_phone-eng
$ make -j32

You MUST check that the build completed successfully. Generally, you’ll see
this at the end of a successful build in the output (typically in green):

build completed successfully (...)

© OPERSYS INC. 4/45

Embedded Android Exercises Version - 2021.11

9. Give the AOSP a spin:
From the same directory where you build the AOSP, start the Cuttlefish target:
$ HOME=${PWD}/out launch_cvd &

At this point, the Cuttlefish target will start with your custom-built Android running
inside and print messages to the command line1. However Cuttlefish itself won’t
be visible. You’ll need to use a Chrome-based browser (Firefox will NOT work)
and direct it to localhost:8443. You will likely need to accept some security
exceptions to access the web page on which you’ll see a device listed since it
doesn’t have a proper certificate. Once you click on the device you’ll then see
the Cuttlefish device interface.

1 If you are seeing errors regarding “kvm” then see the next section.

© OPERSYS INC. 5/45

Embedded Android Exercises Version - 2021.11

You can stop Cuttlefish on the command line as well:
$ HOME=${PWD}/out stop_cvd

© OPERSYS INC. 6/45

Embedded Android Exercises Version - 2021.11

AOSP Fix Ups

This section contains fixes that are required for future exercises. The significance, impact and
necessity of these will be explained later. The reason we do these changes ahead of taking
the time to explain them is that they incur a significant amount of build time. Hence, by the
time we need them their addition would slow us down significantly.

In short, you are expected to conduct these changes “as is” for the moment. The reasons for
these changes will be discussed later in class.

1. There is a file you need to download and put at a very specific location in your AOSP. The
file to be retrieved is http://www.opersys.com/downloads/IOpersysService.aidl and it needs to
be copied to this specific location in your AOSP: [aosp]/frameworks/base/core/java/android/os/

2. Modify your [aosp]/system/core/libcutils/fs_config.cpp to add the highlighted lines:
...
 { 00755, AID_ROOT, AID_ROOT, 0, "bin/*" },
 { 00640, AID_ROOT, AID_SHELL, 0, "fstab.*" },
 { 00755, AID_ROOT, AID_ROOT, 0, "system/glibc/lib/*" },
 { 00755, AID_ROOT, AID_ROOT, 0, "system/glibc/bin/*" },
 { 00750, AID_ROOT, AID_SHELL, 0, "init*" },
 { 00755, AID_ROOT, AID_SHELL, 0, "odm/bin/*" },
...

WARNING: There are 2 data structures in that file that look fairly similar. You are modifying
the one declared as follows:
static const struct fs_path_config android_files[] = {

3. Rebuild your AOSP from the toplevel using “make -j32” or equivalent. We will discuss the
need for these changes later in class. Again, we're doing them in advance to avoid having to
wait for the builds to finish during class.

© OPERSYS INC. 7/45

Embedded Android Exercises Version - 2021.11

System Server

In this section you will learn how to:
• Monitor system services
• Add your own system service to the core set of system services
• Check system services as part of system startup
• Communicate with a system service using “service call”
• Implement and retrieve the status of a running system service using “dumpsys”

1. There are several tools that can be used to monitor and interact with system services. We
suggest you give some a try to see the sort of information you can obtain at runtime about the
system services running on your system (all these assume you’ve run “adb shell” to first log
into Cuttlefish):

• Listing the main system services:
service list

• Listing vendor system services (may not be built by default on Cuttlefish):
vndservice list

• Finding out what process is running the main system server process:
ps -A | grep system_server

• Dumping the internal state of all system services:
dumpsys

• Dumping the internal state of a single system service (Activity Manager in this case):
dumpsys activity

• Checking the logs for the system server process’ PID (replace [] value):
logcat --pid=[PID RETURBED BY PS COMMAND ABOVE]

• Checking the logs for output from a given system service – WindowManager for ex:
logcat | grep -i windowmanager

• Communicate with the activity manager:
am

• Communicate with the package manager:
pm

• Communicate with the window manager:
wm

2. If you want to push the investigation further, you can use the strace command to check the
various commands that communicate with system services. strace relies on the ptrace()
kernel system call to monitor another command and print out what it does. For example, if

© OPERSYS INC. 8/45

Embedded Android Exercises Version - 2021.11

you use strace on the dumpsys command, you’ll notice that dumpsys uses ioctl() system calls
to communicate with the binder driver (/dev/binder). We suggest giving strace a short spin if
you’ve never used it before.

vsoc_x86_64:/ # strace -o /data/local/tmp/strace.out dumpsys
vsoc_x86_64:/ # cat /data/local/tmp/strace.out | grep ioctl

3. In this exercise, we’ll have you add your own system service that prints out a message to
the logs when one of its functions is called. There are several steps to carry out to do so:

a) Download and extract the following tarball, it contains samples we will use to get you
started: http://opersys.com/downloads/systemserver-samples-201019.tar.bz2

Note regarding the suffixes to the files in tarballs we provide you – not all tarballs
have all such files, but some other tarballs below may use these suffixes:

• Any file without one of the following suffixes:
You can use that file as-is

• file-ALREADY_COPIED:
This is a file that you were presumably asked to copy already. It’s being
provided here to you to reinforce its relevance in the present context, but we
highly suggest you don’t copy it again.

• file-DONOTCOPY:
This is a file that you have to inspect to understand why we’re asking you not
to copy it as-is. Maybe it contains just a sample, maybe it’s just an example.
Context and instructor explanations will guide you here.

• file-EXISTS:
This file exists in your tree, but the one we’re providing you has some
differences. You can use the “meld” tool to compare our version with the one
in your AOSP to understand what we’re adding and why we’re adding it.

Make sure you “touch” any file you copy to update its timestamp, otherwise it's likely
to get ignored at the next “make”.

b) You need to place the OpersysService.java file from the tarball at exactly the following
location in your AOSP – double-check to make sure this is the proper path as the
wrong path will cause your build some serious issues:

[aosp]/frameworks/base/services/core/java/com/android/server/
OpersysService.java contains a very basic custom system service that, at this point,
doesn’t really do much. You can check the code to see what it does. Primarily it prints
a message to logcat when it starts and responds to calls to its test() call.
WARNING: When you first build this system service, the build will fail and the compiler

© OPERSYS INC. 9/45

Embedded Android Exercises Version - 2021.11

will complain about a problem with OpersysService.java. The resolution of this error is
part of the exercise. You need to try to understand what the issue is and try to fix the
code correspondingly. The goal here is not to code anything substantial but rather to
“keep the compiler happy”. So look at the error and try to add just enough code to get
the compiler to compile the class. You shouldn’t need more than a handful of lines of
code.

c) You need to modify the main system service registration routine to start the custom
OpersysService system service at startup. To do so, locate the SystemServer.java file
by using “godir” and open it for editing. The SystemServer.java-DONOTCOPY file
contains the sample you need to add to your own SystemServer.java file in order for
the OpersysService to be started and registered at startup. One easy place to add this
system service is right after the registration try/catch statement for the Status Bar
Manager system service. Look for a ServiceManager.addService() call with
Context.STATUS_BAR_SERVICE as its first parameter.

d) You will also need to modify the selinux policies in order to allow your system service to
be registered at startup. If you fail to do so then even if all your code is included at
build time, the system service will fail to register at startup. To allow registration, you
need to modify 2 files under the “system/sepolicy” directory:
◦ “private/service_contexts”
◦ “prebuilts/api/31.0/private/service_contexts”
Both files have to be identical and must be modified to add this entry:
opersys u:object_r:serial_service:s0

We suggest you modify only one of the files and copy it over to the second. If there is
any difference between the 2 files, including just whitespace differences, then the build
will fail. You need to modify 2 files because once a version of Android is released by
Google then the core security policies are supposed to be fixed in stone. Yet, here we
are messing with those rules. So we need to act as if we had amended the prebuilt
definitions that Google itself would have published.
Also, note that we are tagging our system service as belonging to the serial_service
domain. This is a hack to simplify SELinux rule definitions. If we wanted to do this
properly, we’d need to define a new domain called “opersys_service” and make
modifications to several other SELinux files. As this isn’t an SELinux exercise, we’re
using an existing definition that already works.

4. Build the AOSP and use “logcat” to check that your service is started upon system startup.
Refer to the instructions from previous exercises on how to build your AOSP or using logcat to

© OPERSYS INC. 10/45

Embedded Android Exercises Version - 2021.11

monitor system services. Make sure you start Cuttlefish with the “--noresume” option,
otherwise your changes may not be taken into account.

5. Use “service call” to invoke the system service we just added from the command line and
check the logcat to see that it's been properly called:

a) Calling the test() call from the IOpersysService.aidl, thereby causing the test() call in
OpersysService.java to be called – test() is the 3rd call in the AIDL (hence the “3”) and it
takes an int as a parameter (hence the “i32” type for int and “412341” for the value
being passed):
service call opersys 3 i32 412341
Result: Parcel(00000000 '....')

b) Checking logcat should yield something like this:
logcat | grep -i opersys
...
10-18 20:53:12.548 474 815 I OpersysService: test 412341

6. As you saw earlier, one way to investigate the behavior of system services at runtime is to
use the “dumpsys” command. In order for that command to be able to retrieve the state of
system service, that system service must have a method with the following
signature/prototype in its implementation:

 @Override
 public void dump(FileDescriptor fd, PrintWriter pw, String[] args) {
 ...
 }

Add such a method to the OpersysService system service you added earlier to allow it to be
checked by “dumpsys” at runtime. One of the goals of the present exercise is to have you
look at existing system service implementations for examples of how to do things. As such,
we suggest you go to the same directory where you added OpersysService.java (i.e.
[aosp]/frameworks/base/services/core/java/com/android/server/) and look at other classes to
see how the other system services implement the “dump()” method. A few recommendations
while you’re doing that:

• The simplest thing to do in your dump() implementation is to just print something out for
the purposes of the dump command output. A “Hello World!” will be sufficient.

• You’ll notice that most system services do some security checks for permissions when
they receive this call. You don’t have to do that for the present exercise.

• You will add at least 2 “import” statements at the top of your OpersysService.java file in
order for your class to compile once you add your dump() method. Again, look at
existing implementations for guidance.

© OPERSYS INC. 11/45

Embedded Android Exercises Version - 2021.11

Linux Root Filesystem

In this section you will learn how to:
• Set up a workspace to create a custom embedded Linux root filesystem
• Create a skeleton of a root filesystem
• Add a glibc library to a root filesystem
• Configure, build and install BusyBox in a glibc-based embedded Linux root filesystem

NOTE: Refer to the instructor as to whether or not this exercise is conducted during class.

1. Get and install the Opersys Embedded Linux Workspace:
For ARM:
http://bit.ly/28Rz54O -- the last letter here is capital “O”, not zero.
or
https://drive.google.com/file/d/0B0dp197y8Ga7ejI4ZWFIVHh0LVE

For x86-64:
http://bit.ly/1MPEya9
or
https://drive.google.com/file/d/0B0dp197y8Ga7VVZjSmEzak9aSFE

2. Customize the workspace script in the extracted directory to match your own paths. The
script should be called “devbb” or “devx86”, or a similar name. An easy way to set the path
automatically is to set it as follows:

export PRJROOT=${PWD}

3. Run the the environment script:
For ARM:
$. devbb

For x86:
$. devx86

4. Create yourself a root filesystem that includes the glibc shared libraries as in slides 199
and 205, except for the “strip” command.

© OPERSYS INC. 12/45

Embedded Android Exercises Version - 2021.11

5. Make sure you have libncurses5-dev installed:
$ sudo apt-get install libncurses5-dev

6. For BusyBox:
• For ARM:

◦ Download BusyBox 1.20.2 from busybox.net/downloads/ into sysapps
• For x86:

◦ Download BusyBox 1.26.2 from busybox.net/downloads/ into sysapps
• Extract BusyBox using the “tar” command
• Configure BusyBox per the slides:

◦ “Busybox Settings”->”Cross Compiler prefix” (notice the trailing dash):
▪ ${TARGET}-

◦ “Busybox Settings”->“BusyBox installation prefix”:
▪ ${PRJROOT}/rootfs

• Build BusyBox per the slides:
◦ $ make -j8

• Install BusyBox per the slides
◦ $ make install

© OPERSYS INC. 13/45

Embedded Android Exercises Version - 2021.11

Native Android User-Space

In this section you will learn how to:
• Modify the AOSP build system to take into account independently-generated content
• Work with some of the AOSP’s filesystem packaging/generation mechanisms
• Merge a glibc-based root filesystem into AOSP-generated filesystems
• Incorporate 3rd party sources into the AOSP and have them build against Bionic
• Make programs built against different C libraries communicate through the Linux kernel

In addition to the present exercises, several exercises in subsequent sections will also require
you to modify and integrate with native Android user-space components.

1. Modify the AOSP build system to copy the content of a glibc rootfs to its default system
image. You will need to:

• Create [aosp]/rootfs-glibc
$ cd ~/android/android-12.0.0_r2/
$ mkdir rootfs-glibc

• Create a stub file under the rootfs-glibc directory.
$ touch rootfs-glibc/stub

This stub file will act as the build system dependency. Every time you “touch” that file,
it'll force a rebuild of this subdirectory. This is useful because we are going to put
arbitrary content underneath this location which the build system will not be aware of
otherwise.

• Put a prebuilt glibc-based root filesystem under the rootfs-glibc/rootfs directory in your
AOSP. In the context of this class there are 2 ways to get such a root filesystem – refer
to instructor directives to select which of the two to use:
◦ By downloading a prebuilt tarball and extracting it under rootfs-glibc (LIKELIER):

$ cd rootfs-glibc/
$ wget http://www.opersys.com/downloads/rootfs-200727.tar.bz2
$ tar xvjf rootfs-200727.tar.bz2
$ croot

◦ By copying the one generated in the previous “Linux Root Filesystem” section
exercises (UNLIKELY):

$ cp -a ${PRJROOT}/rootfs rootfs-glibc/

The content of [aosp]rootfs-glibc/rootfs is what will be merged into the images
generated by the AOSP.

• You will need a specific build file to instruct the build system to copy the content of
[aosp]rootfs-glibc/rootfs into the images it generates. Such a file is provided to you at

© OPERSYS INC. 14/45

Embedded Android Exercises Version - 2021.11

http://www.opersys.com/downloads/glibcroot-Android-sys.mk and must be put into
rootfs-glibc and renamed to Android.mk:
$ cd rootfs-glibc
$ wget http://www.opersys.com/downloads/glibcroot-Android-sys.mk
$ mv glibcroot-Android-sys.mk Android.mk
$ croot

The semantics and working of this file will be discussed in class.
• In order for the build system to choose to build this new “build module” that we just

added, the name of this module must be added to the list of modules the build system
is instructed to build. If you look in the Android.mk we just added, you’ll see that the
name of the module is “rootfs-glibc”. Hence, we need to find a proper entry to extend
the PRODUCT_PACKAGES variable (which lists the packages to be built for the
target). In this specific case, one of the easiest ways to do so for the type of artifacts
we are adding is to modify the PRODUCT_PACKAGES in
[aosp]/build/target/product/base_system.mk to add the following entry:

PRODUCT_PACKAGES += rootfs-glibc

It would have of course been preferable to modify an .mk file under device/…. but the
build system won’t allow an .mk file under the device/ directory to add something the
/system partition. If you try that you’ll get an error similar to this:
FAILED:
build/make/core/artifact_path_requirements.mk:26: warning:
device/google/cuttlefish/vsoc_x86_64/phone/aosp_cf.mk produces files inside
build/make/targe
t/product/generic_system.mks artifact path requirement.
Offending entries:
system/glibc/rootfs-glibc
In file included from build/make/core/main.mk:1342:
build/make/core/artifact_path_requirements.mk:26: error: Build failed.
09:01:09 ckati failed with: exit status 1

failed to build some targets (42 seconds)

• If you look at the Android.mk we added you’ll see that it copies the content of the glibc-
based rootfs to the /system/glibc directory on the final filesystem layout on the target.
That entry is not by default taken into account by the build system of Android and
provisioned with the proper Unix execution permissions. To fix this you need to modify
the [aosp]/system/core/libcutils/fs_config.cpp file. We did this, however, earlier in the
“AOSP Fix-Ups” exercise section. Hence, it’s not needed here.

• Much like many other aspects of Android, you need to add SELinux rules in order for
the newly-merged content to operate properly. In this specific case, here is a snippet
that you need to add at the tail end of your
[aosp]/device/google/cuttlefish/shared/sepolicy/vendor/file_contexts file:

For rootfs-glibc

© OPERSYS INC. 15/45

Embedded Android Exercises Version - 2021.11

/lib64(/.*)? u:object_r:rootfs:s0

This file controls the device-specific SELinux access rights. This rule states that
“/lib64” entries belong to the “rootfs” domain and will be accessible subject to the rules
set for any process that has access to that domain.

• Once you made all the changes above, you need to rebuild your AOSP and restart
Cuttlefish. Don’t forget the “--noresume” option when starting Cuttlefish.

• To test your additions, shell into the restarted Cuttlefish and run one of the commands
from the glibc-linked BusyBox:
$ adb shell
generic_x86_64:/ # /system/glibc/bin/busybox
BusyBox v1.26.2 (2020-07-27 21:12:36 EDT) multi-call binary.
BusyBox is copyrighted by many authors between 1998-2015.
...
generic_x86_64:/ # /system/glibc/bin/ls
...
generic_x86_64:/ # /system/glibc/bin/ps
...

2. For this exercise, you will be testing a configuration where you have a client process built
against glibc communicate over TCP/IP with a server process linked against Bionic. Sample
code for a client and a server are available from
http://www.linuxhowtos.org/C_C++/socket.htm.
To have the C server build against Bionic:

• Add a new subdirectory: [aosp]/vendor/server
• Add the server.c file to the just-created subdirectory
• In recent versions of Android (including 12), you need to add “#include <strings.h>” to

the C file for it to build. Note that there already is a “string.h” (singular) that’s present.
That’s not sufficient nor does it need to be removed or replaced. You really need to
add “strings.h” (plural).

• Make sure “server” is added to a “PRODUCT_PACKAGES” list in [aosp]/device/google/
cuttlefish/shared/phone/device_vendor.mk.

• Make sure you have an appropriate Android.mk within [aosp]/vendor/server to get your
app to build. Here's a sample:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SRC_FILES:= \
server.c

LOCAL_SHARED_LIBRARIES := \
libcutils

LOCAL_PROPRIETARY_MODULE := true

© OPERSYS INC. 16/45

Embedded Android Exercises Version - 2021.11

LOCAL_MODULE:= server

include $(BUILD_EXECUTABLE)

If you are using the prebuilt rootfs tarball downloaded from opersys.com then the glibc-linked
client is already compiled for you. If you need to manually build the client against glibc then:

• Place the C client into the [aosp]/rootfs-glibc/rootfs/bin/
• Use the toolchain that's part of the glibc-based rootfs we had earlier:

◦ For ARM:
${PRJROOT}/tools/arm-unknown-linux-gnueabi/bin/arm-unknown-linux-gnueabi-gcc -o client client.c

◦ For x86
${PRJROOT}/tools/x86_64-unknown-linux-gnu/bin/x86_64-unknown-linux-gnu-gcc -o client client.c

As before, you need to rebuild your AOSP and restart Cuttlefish to test these changes.

To start the server (from the device’s command line):
server 4444 &

To connect to the server from the client:
/system/glibc/bin/client localhost 4444

The client will prompt you for a message to send to the server and the server will ack
reception.

© OPERSYS INC. 17/45

Embedded Android Exercises Version - 2021.11

Kernel Basics

In this section you will learn how to:
• Check what kernel version you are using
• Fetch, build and use a set of kernel sources “the Android way”
• Replace a default AOSP-provided kernel with a custom one

1. Check kernel version on the device (Shell into the device and type “cat /proc/version”). Your
output should look something like this:

vsoc_x86_64:/ # cat /proc/version
Linux version 5.10.43-android12-9-00031-g5b153f189546-ab7618735 (build-
user@build-host) (Android (7284624, based on r416183b) clang version 12.0.5
(https://android.googlesource.com/toolchain/llvm-project
c935d99d7cf2016289302412d708641d52d2f7ee), LLD 12.0.5 (/buildbot/src/android/
llvm-toolchain/out/llvm-project/lld
c935d99d7cf2016289302412d708641d52d2f7ee)) #1 SMP PREEMPT Fri Aug 6 17:53:30
UTC 2021

This information is useful to know what version of the kernel you are relying on.

2. Download the kernel and associated toolchain (Presumably this was already done as part
of class preparation):

a. Create directory for working on kernel – assuming this is outside your the top-level of
the AOSP:

$ cd ~/android/
$ mkdir android12-5.10-kernel
$ cd android12-5.10-kernel

b. Get the kernel itself and its tools:
$ repo init -u https://android.googlesource.com/kernel/manifest \
> -b common-android12-5.10
$ repo sync

The final command will take a bit of time to download everything that you need. Once it’s
done, you’ll then have a set of kernel sources and the tools to build them. More information
about using this technique of fetching the kernel and the following instructions on building the
kernel can be found here: https://source.android.com/setup/build/building-kernels

3. Make sure you have libncurses5-dev and libssl-dev installed:
$ sudo apt-get install libncurses5-dev libssl-dev

These packages are required for building the kernel. If you omit them then you will typically
get errors at kernel build time.

© OPERSYS INC. 18/45

Embedded Android Exercises Version - 2021.11

4. [THIS IS LIKELY NOT NEEDED WITH Ubuntu 20.04 and Android 12] By default, the kernel
build script attempts to generate an LZ4-compressed kernel image at build time. If you are
using Ubuntu 18.04 or earlier, the tool for generating this image is either absent or won’t work.
Hence, we need to reconfigure the kernel to use BZ2 compression instead. To do so, open
the “common/arch/x86/configs/gki_defconfig” file from the toplevel of the kernel repository and
replace the LZ4 configuration. Here is what a “git diff” looks like on that file once it has been
modified (changes in bold):

diff --git a/arch/x86/configs/gki_defconfig
b/arch/x86/configs/gki_defconfig
index 5f6b1e4dd7f3..5ec13a27f3f1 100644
--- a/arch/x86/configs/gki_defconfig
+++ b/arch/x86/configs/gki_defconfig
@@ -1,5 +1,5 @@
 CONFIG_UAPI_HEADER_TEST=y
-CONFIG_KERNEL_LZ4=y
+CONFIG_KERNEL_BZIP2=y
 # CONFIG_USELIB is not set
 CONFIG_AUDIT=y
 CONFIG_NO_HZ=y

“CONFIG_” variables are the means by which a kernel is configured.

5. Build the kernel and then the kernel modules required to boot Cuttlefish. To do so, issue
these commands at the toplevel of the kernel repository you downloaded earlier:

$ cd ~/android/android12-5.10-kernel
$ SKIP_MRPROPER=1 BUILD_CONFIG=common/build.config.gki.x86_64 \
> build/build.sh
$ SKIP_MRPROPER=1 \
> BUILD_CONFIG=common-modules/virtual-device/build.config.virtual_device.x86_64 \
> build/build.sh

The “build.sh” script is the primary build script for kernels and it takes parameters in the form
of environment variables set prior to its execution. You can look at the script for additional
options. Beware that the use of the options is not always clear and you may need to inspect
the actual code to understand what’s going on.
Once the build is over, you can check the “out/android12-5.10/dist/” directory for the output. It
should contain a “bzImage” file, which is the kernel image, as well as many “*.ko” files, which
are the kernel modules required for this kernel.

6. Replace the kernel and modules provided by default in the AOSP for Cuttlefish with the
kernel and modules you just built, and rebuild the AOSP:

$ cd ~/android/android-12.0.0_r2
$ cd kernel/prebuilts/5.10/
$ mv x86_64 x86_64-orig
$ mkdir x86_64

© OPERSYS INC. 19/45

Embedded Android Exercises Version - 2021.11

$ cd ../common-modules/virtual-device/5.10
$ mv x86_64 x86_64-orig
$ mkdir x86_64
$ cd ~/android
$ cp android12-5.10-kernel/out/android12-5.10/dist/* \
> android-12.0.0_r2/kernel/prebuilts/5.10/x86_64/
$ cp android12-5.10-kernel/out/android12-5.10/dist/bzImage \
> android-12.0.0_r2/kernel/prebuilts/5.10/x86_64/kernel-5.10
$ cp android12-5.10-kernel/out/android12-5.10/dist/*.ko \
> android-12.0.0_r2/kernel/prebuilts/common-modules/virtual-device/5.10/x86-64/
$ cd android-12.0.0_r2
$. build/envsetup.sh
$ lunch aosp_cf_x86_64_phone-eng
$ cd out/target/product/vsoc_x86_64/
$ rm kernel
$ rm -rf \
>./obj/PACKAGING/depmod_VENDOR_RAMDISK_intermediates/lib/modules/0.0/lib/modules/
$ rm -rf obj/PACKAGING/depmod_vendor_ramdisk_stripped_intermediates/
$ croot
$ make -j32

The default Cuttlefish kernel and modules are provided under “kernel/prebuilts/”. The
commands above replace those files with the ones built earlier. For real devices, the AOSP
generally stores kernel modules under a “device/VENDOR/DEVICE-kernel” directory. BSPs
you get from silicon vendors might operate in a completely different way.

7. Restart Cuttlefish and check the new kernel's version (“cat /proc/version”):
$ HOME=${PWD}/out launch_cvd --noresume &
$ adb shell cat /proc/version
Linux version 5.10.66-android12-9-00041-gfa9c9074531e (build-user@build-host)
(Android (7284624, based on r416183b) clang version 12.0.5
(https://android.googlesource.com/toolchain/llvm-project
c935d99d7cf2016289302412d708641d52d2f7ee), LLD 12.0.5 (/buildbot/src/android/
llvm-toolchain/out/llvm-project/lld
c935d99d7cf2016289302412d708641d52d2f7ee)) #1 SMP PREEMPT Fri Nov 12 11:36:25
UTC 2021

The “--noresume” option of Cuttlefish is important because it’ll avoid using a cached previous
Cuttlefish run. Notice that the version information printed out is different from the one you last
checked it.

© OPERSYS INC. 20/45

Embedded Android Exercises Version - 2021.11

Linux Device Driver

In this section you will learn how to:
• Integrate a vendor driver to the Google Kernel repository
• Compile a vendor driver using Google’s kernel build tools
• Modify the AOSP to take into account a new device in the native filesystem
• Integrate a driver with native Android user-space components for proper operation
• Check if a driver has been properly-loaded at boot time

NOTES:
• The exercises in this section assume that you have a kernel that was downloaded and

built according to the “Kernel Basics” exercise section.
• The tarball we’ll use for our exercise is here:

http://www.opersys.com/downloads/vendor-circular-driver-201020.tar.bz2
• The driver we use in these exercises implements a circular buffer over the read/write

file-operations. When read, if there is not data available, it returns 0 bytes.
• The driver is, however, simplistic. It doesn’t implement blocking/waking semantics nor

does it use proper locking primitives. It’s ok for an exercise, but wouldn’t be something
you would ship to anyone.

• Also, the driver relies on misc_register() instead of register_chrdev() and will therefore
register your char dev and fire off a hotplug event.

• For more information on device driver writing in Linux, have a look at the Linux Device
Drivers book (dated as it may be): http://lwn.net/Kernel/LDD3/

• For reference, there’s another driver sample here:
http://tldp.org/LDP/lkmpg/2.6/html/x569.html

1. Download and extract the sample driver within the toplevel directory of the previously-
downloaded kernel repository:

$ cd ~/android/android12-5.10-kernel
$ wget http://www.opersys.com/downloads/vendor-circular-driver-201020.tar.bz2
$ tar xvjf vendor-circular-driver-201020.tar.bz2

Have a look at the content of the “vendor/” directory to see what’s inside for building the driver.
Note that Google has no known documentation at the time of this writing that explains how to
build “vendor” modules alongside its GKI kernels. Hence, while the recipe here works, it’s not
necessarily the final way by which Google will want or instruct vendors to build their modules
against GKI kernels.

© OPERSYS INC. 21/45

http://lwn.net/Kernel/LDD3/

Embedded Android Exercises Version - 2021.11

2. Build the driver using Google’s build script and copy it to the proper location in
$ SKIP_MRPROPER=1 BUILD_CONFIG=common/build.config.gki.x86_64 \
> EXT_MODULES="vendor/circular-driver" build/build.sh
$ cp out/android12-5.10/dist/circular-char.ko \
> ~/android/android-12.0.0_r2/kernel/prebuilts/common-modules/virtual-device/5.10/x86-64/

The build process will generate a “circular-char.ko” under out/android12-5.10/dist/. This is the
driver module. We need to copy it to the proper location under “prebuilts” in the AOSP in
order for it to be: a) taken into account by the AOSP build system, and b) automatically loaded
at start from vendor-image.

3. To have ueventd create the proper entry in /dev at runtime, you'll need to modify a
ueventd.rc to have a proper entry for the module. You can modify the
device/google/cuttlefish/shared/config/ueventd.rc file to add:

/dev/circchar 0666 system system

Without this line, the driver will be owned by the “root” user and will be inaccessible to a
system service running as the “system” user.

4. To allow the device driver to be accessible by the system server, you'll need to modify the
selinux policies to have a rule for the /dev entry. To do so, add “/dev/circchar” to the list of
files allowed by the system server in the following file:
“device/google/cuttlefish/shared/sepolicy/vendor/file_contexts”:

/dev/circchar u:object_r:tty_device:s0

As before, this file contains the SELinux access rules for files in the filesystem. The rule we
just added states that “/dev/circchar” belongs to the “tty_device” domain and will be
accessible subject to the rules set for any process that has access to that domain.

5. Recompile your AOSP and restart Cuttlefish (again, don’t forget “--noresume”). You should
then shell into your device and see the module loaded and the device under /dev:

$ adb shell
vsoc_x86_64:/ # lsmod
Module Size Used by
zram 28672 0
...
circular_char 16384 0
...
vsoc_x86_64:/ # ls -al /dev/circchar
crw-rw-rw- 1 system system 10, 123 2021-11-17 14:31 /dev/circchar

Notice how the entry under /dev/ belongs to the “system” user and group.

6. You can now use “cat” and “echo” commands to read and write to your device:

© OPERSYS INC. 22/45

Embedded Android Exercises Version - 2021.11

vsoc_x86_64:/ # echo foobar > /dev/circchar
vsoc_x86_64:/ # cat /dev/circchar
foobar
vsoc_x86_64:/ # cat /dev/circchar
vsoc_x86_64:/ #

Notice how the 2nd “cat” command returns nothing. This is important because it means that
the bytes have been “consumed”. The driver is also fairly verbose in the kernel logs. In a
typical driver this would be wrong to do, but the exercise is meant to be academic:
vsoc_x86_64:/ # dmesg
[272.584741] device_open called
[272.586177] device_write called
[272.587692] Writing f
[272.588957] Writing o
[272.590306] Writing o
[272.591285] Writing b
[272.592183] Writing a
[272.592995] Writing r
[272.593807] Writing \x0a
[272.595215] device_release called
[276.354275] device_open called
[276.354555] device_read called
[276.354794] Reading o
[276.354989] Reading o
[276.355158] Reading b
[276.355328] Reading a
[276.355497] Reading r
[276.355666] Reading \x0a
[276.355929] Reading \x00
[276.356125] device_read called
[276.356707] device_release called
[282.449302] device_open called
[282.449536] device_read called
[282.449756] device_release called

© OPERSYS INC. 23/45

Embedded Android Exercises Version - 2021.11

HAL Preparation Homework

This section contains a few preparatory steps for avoiding long build times. What’s being
done here will be explained later.

1. Replace your IOpersysService.aidl file (use godir to find it if you don’t remember the path)
with the following file (you’ll want to strip the suffix):
https://www.opersys.com/downloads/IOpersysService.aidl-FULL

2. Add the stubs in the following file to your OpersysService.java file right after the read and
write calls: https://www.opersys.com/downloads/OpersysService.java-STUBS

3. Rebuild your AOSP.

© OPERSYS INC. 24/45

Embedded Android Exercises Version - 2021.11

Hardware Abstraction Layer / HIDL

In this section you will learn how to:
• Connect a system service to a device driver through the HAL
• Add native code to a system service
• Introduce a new HAL using HIDL files into the HAL
• Add a legacy header HAL definition to the HAL
• Connect a HAL module to a device driver
• Add the relevant extensions/changes to the AOSP for all of the above

For this exercise, we will use a tarball that is structured with the same directory hierarchy as
your AOSP. Despite the hierarchy similarity, do NOT extract this archive into or onto your
AOSP. Instead, extract it separately and proceed on to copy the content bit by bit, as needed,
into your AOSP. As before, the following file suffixes apply:

• Any file without one of the following suffixes:
You can use that file as-is

• file-ALREADY_COPIED:
This is a file that you were presumably asked to copy already. It’s being
provided here to you to reinforce its relevance in the present context, but we
highly suggest you don’t copy it again.

• file-DONOTCOPY:
This is a file that you have to inspect to understand why we’re asking you not
to copy it as-is. Maybe it contains just a sample, maybe it’s just an example.
Context and instructor explanations will guide you here.

• file-EXISTS:
This file exists in your tree, but the one we’re providing you has some
differences. You can use the “meld” tool to compare our version with the one
in your AOSP to understand what we’re adding and why we’re adding it.

• file-EXAMPLE:
This is a sample that you may want to either use as-is or take portions of for
your own use.

Note: it's important to “touch” any files you copy to update timestamps, otherwise they’ll likely
get ignored at the next “make”.

© OPERSYS INC. 25/45

Embedded Android Exercises Version - 2021.11

Tarball for this section of exercises:
http://opersys.com/downloads/halext-opersys-cuttlefish-12.0-211117.tar.bz2

1. Download and extract the exercise tarball:
$ cd ~/android
$ wget http://opersys.com/downloads/halext-opersys-cuttlefish-12.0-211117.tar.bz2
$ tar xvjf halext-opersys-cuttlefish-12.0-211117.tar.bz2

2. Add the System Server portions of the tarball to your AOSP. These are the relevant bits
(note the suffixes):
frameworks/
└── base
 ├── core
 │ └── java
 │ └── android
 │ └── os
 │ └── IOpersysService.aidl-ALREADY-COPIED
 └── services
 ├── core
 │ ├── java
 │ │ └── com
 │ │ └── android
 │ │ └── server
 │ │ └── OpersysService.java-EXAMPLE
 │ └── jni
 │ ├── Android.bp-EXISTS
 │ ├── com_android_server_OpersysService.cpp
 │ └── onload.cpp-EXISTS
 └── java
 └── com
 └── android
 └── server
 └── SystemServer.java-EXISTS

Regarding the various parts of this tree:
• You’ve already added the IOpersysService.aidl file and it’s provided here for

completeness. Avoid touching this file as it will trigger a rebuild of the framework.
• You already have an OpersysService.java but it doesn’t contain the necessary code to

interact with its JNI counter-side. The version here does provide the JNI hooks and
actual implementations of read() and write(), but it doesn’t have a dump() function such
as the one you implemented earlier. If you want to preserve your dump() function then
merge it with this file and use the result as your new OpersysService.java. Otherwise,
you can use this file as-is.

• Everything under “jni” is more or less new. com_android_server_OpersysService.cpp
is the JNI side of the system service. You can take this file as-is without modification.

© OPERSYS INC. 26/45

Embedded Android Exercises Version - 2021.11

It works “out of the box”. The corresponding Android.bp and onload.cpp already exist
in your tree and you need to take the relevant parts of the versions we’re giving you
and copy only the parts relevant to the present system service. You can use “meld” to
compare your version to ours.

• You already likely amended SystemServer.java in the previous system service
exercise. It’s provided here also for completeness.

3. Add the hardware/HAL portions of the tarball to your AOSP. These are the relevant bits
(note the suffixes, or lack thereof in this case):
hardware/
├── interfaces
│ ├── compatibility_matrices
│ │ ├── compatibility_matrix.6.xml-EXISTS
│ │ └── compatibility_matrix.current.xml-EXISTS
│ └── opersys
│ ├── 2.0
│ │ ├── Android.bp
│ │ ├── default
│ │ │ ├── Android.bp
│ │ │ ├── android.hardware.opersys@2.0.xml
│ │ │ ├── Opersys.cpp
│ │ │ └── Opersys.h
│ │ ├── IOpersys.hal
│ │ └── types.hal
│ └── Android.bp
└── libhardware
 └── include
 └── hardware
 └── opersyshw.h

Regarding the various parts of this tree:
• You can copy all this content as-is in the proper location of your tree without any

changes. It works “out of the box”
• All Android.bp files here were originally auto-generated either using the “hidl-gen” tool

or by running the “hardware/interfaces/update-makefiles.sh” script. Some of them had
to be tweaked after having been generated. For the moment there is nothing for you to
change here.

• The .hal files are the HIDL definitions of the “Opersys” hardware type.
• The files under “hardware/interfaces/opersys/2.0/default/” are the default HIDL

implementation for the Opersys hardware type that connects the HIDL definition the
legacy header-based HAL definition.

• opersyshw.h is the legacy HAL definition (pre-Treble) for the Opersys hardware type.
• android.hardware.opersys@2.0.xml contains the VINTF fragment required for this

© OPERSYS INC. 27/45

Embedded Android Exercises Version - 2021.11

Opersys default HIDL implementation to operate properly (i.e. as a passthrough
implementation).

• The compatibility matrix additions are required for the AOSP to build since we’re adding
a new HAL. This is new starting with Android 12.

4. Fix the API definitions to allow the new hardware type to be permitted as a
same-process/passthrough implementation. These are the relevant bits (note the suffixes):
build
└── target
 └── product
 └── gsi
 └── 31.txt-EXISTS

Regarding the various parts of this tree:
• 31.txt contains the Google-published reference for what APIs/definitions are available

in the AOSP release that matches API level 31 (i.e. Android 12).
Same-process/passthrough implementations are only available for HALs that Google
explicitly grants. If we don’t modify this file, therefore, we won’t be able to use the HAL
parts that we added since we are using the passthrough implementation for our new
hardware type. Note that in general this isn’t something that you’d want to be doing in
a shipping AOSP. One of the purposes in the present exercises is to understand some
of the core mechanisms in the AOSP.

5. Fix the SELinux policies to allow the new additions. These are the relevant bits (note the
suffixes):
system/
└── sepolicy
 └── private
 ├── hwservice_contexts-EXISTS
 └── service_contexts-EXISTS

Regarding the various parts of this tree:
• You already amended service_contexts earlier to permit the registration of your system

service. It’s provided here for completeness.
• You need to modify the hwservice_contexts file to allow the new hardware type to have

HIDL implementations registered for it. Much like earlier for the service_contexts, we
are reusing an existing domain definition to tag our hardware type. This isn’t how it
should be done, but it simplifies the exercise with regards to SELinux rule
modifications.

6. Add the device-specific portions of the tarball to your AOSP. These are the relevant bits

© OPERSYS INC. 28/45

Embedded Android Exercises Version - 2021.11

(note the suffixes):
device/
└── google
 └── cuttlefish
 ├── guest
 │ └── hals
 │ └── opersyshw
 │ ├── Android.bp
 │ └── opersyshw.c
 └── shared
 ├── config
 │ └── ueventd.rc-EXISTS
 ├── phone
 │ └── device_vendor.mk-EXISTS
 └── sepolicy
 └── vendor
 └── file_contexts-EXISTS

Regarding the various parts of this tree:
• The “device/google/cuttlefish/opersyshw/” directory contains the actual HAL module

implementation. This is the portion that sits under the HAL and should implement
communication with the device driver you added earlier. IMPORTANT: Note that the
opersyshw.c file we give you does NOT actually communicate with your driver. This is
part of the exercise. You need to add the necessary code to that file to communicate
with “/dev/circchar”. We suggest you google a bit for “Unix file I/O” and look at some
examples. You shouldn’t need to add more than about 5 or 6 lines of code in the entire
file. Don’t overdo it and make sure you use unbuffered file I/O operations.

• You should have already modified the ueventd.rc file earlier. It’s provided here with
modifications for completeness.

• The device_vendor.mk file contains additions for ensuring the HAL module above and
necessary HAL libraries are built.

• The file_contexts file contains SELinux rules that make the HAL module and HAL
libraries accessible as required by the relevant security contexts. Note that you already
modified this file earlier and the version we are giving you here might contain things
that you have already added – which doesn’t mean there aren’t new things that you
don’t already have.

7. Modify the HIDL interface generation Go-lang program to allow us to continue using HIDLs
instead of AIDL files. This is the relevant bit:
system/
└── tools
 └── hidl
 └── build
 └── hidl_interface.go-EXISTS

© OPERSYS INC. 29/45

Embedded Android Exercises Version - 2021.11

If you don’t make this modification, the AOSP build system will refuse to build your added
HIDL. This is new as of Android 12.

8. Once you have made your additions, rebuild your AOSP and restart Cuttlefish (don’t forget
the “--noresume” parameter).

9. To test your additions, you should be able to write and read into the driver through the
system service’s AIDL interface and correspondingly read and write from the driver. For
example:

service call opersys 2 s16 foobar
Result: Parcel(00000000 00000006 '........')
cat /dev/circchar
foobar
echo test-string > /dev/circchar
service call opersys 1 i32 40
Result: Parcel(
 0x00000000: 00000000 0000000c 00650074 00740073 '........t.e.s.t.'
 0x00000010: 0073002d 00720074 006e0069 000a0067 '-.s.t.r.i.n.g...'
 0x00000020: 00000000 '.... ')

10. Implement or extend the dump() function within your system server in order to allow the
dumpsys utility to retrieve the number of calls read() and write() having been made since
system startup.

© OPERSYS INC. 30/45

Embedded Android Exercises Version - 2021.11

Stack Extension Exercises

In this section you will learn how to:
• Extend a vertical stack from the app level to the driver to add new functionality
• Add new definitions to an AIDL file
• Implement new AIDL definitions in a system service
• Connect Java-based system service calls to C++ using JNI
• Implement JNI functions and their entries in JNI method tables
• Generate required build artifacts for new HAL definitions
• Generate default implementations for HAL definitions
• Modify default HAL implementations to implement calls to legacy HALs
• Extend legacy HALs
• Implement new calls in a legacy HAL module
• Connect a HAL module to a driver using ioctl() calls
• Extend a character device driver to add ioctl() calls

We suggest you use the previous file tree descriptions as your guide to this exercise. The
layers are all the same, and there are modifications required at every layer.

0. You may want to make a backup copy of your working tree before proceeding with this
exercise in order to be sure that you have something to go back to if you don’t have the time to
complete this exercise. Here’s how you can use the “repo” command to commit your AOSP
changes to your local tree before proceeding:

$ repo forall build/make/ device/google/cuttlefish/ frameworks/base/
hardware/libhardware/ hardware/interfaces/ prebuilts/qemu-kernel/
system/core/ system/sepolicy/ system/tools/hidl/ -c git add .
$ repo forall build/make/ device/google/cuttlefish/ frameworks/base/
hardware/libhardware/ hardware/interfaces/ prebuilts/qemu-kernel/
system/core/ system/sepolicy/ system/tools/hidl/ -c git commit -m "Initial
changes for Opersys system service and HAL"

1. Modify the IOpersysService AIDL and the system service deriving from it to add the
following class (you can grab a copy here as well –
https://www.opersys.com/downloads/IOpersysService.aidl-FULL):

void clearBuffer(), which empties the circular buffer
boolean isThereContent(), which tells the caller whether there's content to read
long getLastWriteTime(), which returns the time at which the last write happens

© OPERSYS INC. 31/45

Embedded Android Exercises Version - 2021.11

int getReadStat(), which returns the number of read() calls made to the driver
int getWriteStat(), which returns the number of write() calls made to the driver
void setBufferToChar(char), which sets the buffer's content to a char value

Stub the implementations in OpersysService.java to “keep the compiler happy” and restart the
AOSP build. We do this in the beginning because this change will cause a framework rebuild
which will itself trigger the rebuild of quite a few components. Since this takes a bit of time, it’s
best to start by making this disruptive change first and then proceed in parallel to the rest of
the changes while the build continues.

2. Implement the ioctl() call of the driver to:
a. Zero out the content of the circular buffer
b. Poll the driver to see if there's new data in the buffer
c. Get last write time-stamp
d. Get the number of calls to read()
e. Get the number of calls to write()
f. Set the entire content of the buffer to a given character value

A few notes regarding this exercise:
• ioctl() calls are generally frowned upon for new drivers, /sys (sysfs) entries being

preferable. We are using them here for simplification.
• You can use the Linux Device Drivers book linked to earlier for a reference on how to

implement ioctl() calls.
• You'll need to implement unlocked_ioctl() instead of ioctl() in the file operations struct.

Here is the signature of the function pointer you need to add an implementation for in
your driver (taken from include/linux/fs.h):
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);

You should define yourself a device_ioctl that has a similar signature:
long device_ioctl (struct file * filep, unsigned int cmd, unsigned long arg) {}

• You then need to amend the file_operations struct in circular-char.c to connect the
unlocked_ioctl function pointer to your implementation:
...
.unlocked_ioctl = device_ioctl,
...

• The device_ioctl() function must do a switch-case on the “cmd” parameter. You can
define your command set as something like this – this isn’t the proper way to do that,
but it works for the present exercise:
#define CMD_BASE 0x13481432
#define CMD_ZERO_CONTENT CMD_BASE + 0
#define CMD_IS_THERE_CONTENT CMD_BASE + 1
...

© OPERSYS INC. 32/45

Embedded Android Exercises Version - 2021.11

• Once you have modified the driver, refer the previous device driver instructions on how
to build the driver and copy it to your AOSP for inclusion at the next rebuild of the
AOSP.

• A sample “rought cut” driver with the above changes is available here:
https://www.opersys.com/downloads/circular-char.c-EXT_SAMPLE

3. Once the driver is modified, go to the HAL module in device/google/cuttlefish/opersyshw/
and modify opersyshw.c to add calls to invoke the new calls in the driver. You should have
something like this added to your file:

#define CMD_BASE 0x13481432
#define CMD_ZERO_CONTENT CMD_BASE + 0
#define CMD_IS_THERE_CONTENT CMD_BASE + 1
...
void opersyshw__zero_content()
{

ioctl(fd, CMD_ZERO_CONTENT, 0);
}

int opersyshw__is_there_content()
{

return ioctl(fd, CMD_IS_THERE_CONTENT, 0);
}

You will also need to modify the open_opersyshw() function to register those new functions
into the legacy HAL definitions that will need to also amend further in the exercises:

static int open_opersyshw(const struct hw_module_t* module, char const* ...
 struct hw_device_t** device)
{
...
dev->zero_content = opersyshw__zero_content;
dev->is_there_content = opersyshw__is_there_content;
...

4. Extend the legacy HAL struct in opersyshw.h under hardware/libhardware/include/hardware
to add the new calls.

5. Rework the HIDL definitions to add the new calls. This is a bit of a tricky step. You need
to:

1. Keep a backup of the hardware/interfaces/opersys/ directory we gave you
2. Go into hardware/interfaces/opersys/ and delete everything except the .hal and .xml

files
3. Amend the .hal files to add your new calls
4. Use the hidl-gen script as described here

© OPERSYS INC. 33/45

Embedded Android Exercises Version - 2021.11

(https://source.android.com/devices/architecture/hidl-cpp#creating-the-hal-server) to
regenerate a default HIDL implementation:

$ croot
$ PACKAGE=android.hardware.opersys@2.0
$ LOC=hardware/interfaces/opersys/2.0/default/
$ hidl-gen -o $LOC -Lc++-impl -randroid.hardware:hardware/interfaces \
 -randroid.hidl:system/libhidl/transport $PACKAGE
$ hidl-gen -o $LOC -Landroidbp-impl -randroid.hardware:hardware/interfaces \
 -randroid.hidl:system/libhidl/transport $PACKAGE

5. Use hidl-gen to create the Android.bp used to build the .hal files (also from root dir):
$ hidl-gen -Landroidbp -randroid.hardware:hardware/interfaces $PACKAGE

You may need to do this as well to get the AOSP to ignore the changes that we’ve
made:

$ cp out/soong/vndk/vndk.libraries.txt build/make/target/product/gsi/31.txt

6. Compare all the files generated to those of the backup you did at the beginning of the
exercise and merge back what we had given you.

7. Add the implementation for the functions under
hardware/interfaces/opersys/2.0/default/Opersys.cpp that we hadn’t given you an
implementation.

6. Rework the com_android_server_OpersysService.cpp file to add:
1. JNI calls to receive from the Java side
2. Calls to the newly extended HIDL interface

7. Go back to OpersysService.java and extend it to now call on the new JNI calls added to
com_android_server_OpersysService.cpp.

8. You should now be able to rebuild your AOSP and test your extended calls by using the
“service” command line tool with the extend AIDL.

Extra:

These exercise will have you extend your system service to make it act like a real system
service that reacts to hardware events by sending an Intent that might be receive by or
activate an application.

9. Add a “void enableIntentOnContent()” and “void disableIntentOnContent()” to the
OpersysService that makes it so that the service periodically polls the driver to see if it's got
new content and broadcasts a new Intent when new content is found. Use the driver's ability

© OPERSYS INC. 34/45

Embedded Android Exercises Version - 2021.11

to give you the time of the last write to avoid sending an Intent twice for the same addition to
the buffer.

10. Use the “service call” command to call on “enableIntentOnContent()” and catch the Intent
with a BroadcastReceiver inside an app.

11. Build your AOSP and test your additions.

© OPERSYS INC. 35/45

Embedded Android Exercises Version - 2021.11

AOSP sources and symbolic debugging

In this section you will learn how to:
• Import the AOSP as a project into Android Studio
• Use Studio to explore the AOSP
• Debug the AOSP’s java code using Studio
• Use lldb to debug C/C++ code
• Step from a Java system service all the way down to a HAL module with Studio and

lldb

1. Generate and run the idegen script:
$ cd ~/android/android-12.0.0_r2
$. build/envsetup.sh
$ lunch 31
$ make idegen && development/tools/idegen/idegen.sh

This should result in your having a “android.ipr” file at the top level of your AOSP. Note that
the build may complain about permission issues with some “root” directories. You can ignore
this.

2. Add the Android's sources as a Java project by opening the “android.ipr” file as existing
project in Android Studio. A few gotchas:

• Accept converting the android.ipr to a new format if prompted.
• Do NOT accept migrating the project to Gradle if prompted.
• Watch out for memory limit messages. You may need to increase the size of the heap

attributed to Android Studio. Click on the warning message to be taken to the proper
menu.

• Watch out for filesystem watch limit. You may need to increase the watch limits by
following the steps outlined in the link in the error message.

• You must make sure you have the SDK support for API 31
• Ignore messaging regarding git indexing

3. Explore Android Studio's Java sources browsing capabilities (i.e. try out the shortcuts
suggested a developer.android.com).

4. With the system_server process (i.e. “system_process” as shown in the list) selected in the
Android Device Monitor, set a breakpoint in frameworks/base/services/core/java/com/android/

© OPERSYS INC. 36/45

Embedded Android Exercises Version - 2021.11

server/statusbar/StatusBarManagerService.java:expandNotificationsPanel(). Use “service call
statusbar 1” to expand the status bar. Eclipse should now break into the debug view at the
breakpoint you selected. Now, you can step in the Status Bar Manager's code for expanding
the notifications panel.

5. Do the same as the previous exercise but with OpersysService.java. Use “service call
opersys 2 s16 foobar” to send the “foobar” string to the Opersys system service. User
“service call opersys 1 i32 45” to read 45 bytes from the Opersys system service.

6. Use the “lldbclient.py” on the host to step from the JNI side of the system service all the
way down the driver call. In other words, add a breakpoint to read_native() and write_native()
and follow the calls all the way to the corresponding open(), read() and write() occurring in the
opersyshw HAL.

$ lldbclient.py -n system_server

A few quick lldb commands, which resemble those of gdb by the way – you’ll easily find many
tutorials on the internet with a lot more details:

• cont: Continue running the program – you’ll need to do this after setting breakpoints
• b: Set a breakpoint, ex.: b com_android_server_OpersysService.cpp:75

◦ This command supports TAB-completion for filenames
◦ “:75” is the line number

• n: Step over next line
• s: Step into function
• p: Print variable

◦ p var: prints “var”
◦ p &var: prints dereferenced “var” -- useful is, say, “var” is a pointer.

7. Full system service debugging:
• With the system_server process attached to using Android Studio, set breakpoints in

the Opersys system service added earlier, namely in read() and write()
• Use lldb to set breakpoints in the system service's JNI code: init_native(), read_native()

and write_native()
• Have the system service invoked using “service call opersys ...”
• Step through the code starting from the system service's java code all the way down to

the HAL module's writing to the device driver.

© OPERSYS INC. 37/45

Embedded Android Exercises Version - 2021.11

Tracing with ftrace

In this section you will learn how to work with ftrace and Android’s integration of it to get
detailed information about the system’s operation.

1. Use ftrace to monitor the following:
• Scheduling change events
• CPU frequency scaling events
• All events occurring while the “system_server” process is scheduled

2. Modify the circular character driver to add a static tracepoint to monitor each read() and
write() operation to it. Use trace_printk() to achieve that, remember that you'll have to use
MODULE_LICENSE(“GPL”) in order to have access to this symbol. Rebuild your driver and
reload it on the device. Start ftrace tracing and make sure you can see the output in the
ftrace output at runtime when you do a “cat” or “echo” as above.

3. Instrument the native parts of the Opersys system service to log to ftrace's “trace_marker”
file. Namely use the ATRACE_* macros to instrument (use “godir” to find the files):

• opersyshw.c
• Opersys.cpp
• com_android_server_OpersysService.cpp

For “Opersys.cpp”, you’ll need to edit the Android.bp in the same directory and ensure that it i
has the following libraries as dependencies: libcutils and libutils.

4. Update your target and rerun it with ftrace enabled and check that the instrumentation
added in the previous exercise is reflected in the traces generated. Make sure you review the
slides on how to enable tracing for the AOSP parts.

5. Instrument the Java side of the system service, namely OpersysService.java, to log to
ftrace's trace_marker file.

6. Update your system and check that you can use ftrace to follow all the tracepoints from the
java layer, to the native layer, and into the driver.

© OPERSYS INC. 38/45

Embedded Android Exercises Version - 2021.11

Tracing with eBPF/BCC

In this section, you’ll learn how to use Google’s AndroDeb to get a chroot-hosted Debian
distribution running inside Android in order to use to get access to the full range of eBPF/BCC
tracing functionality.

1. How to use AndroDeb:
• Start by replacing the adeb directory under external/:

$ cd external
$ mv adeb adeb-orig
$ git clone https://github.com/joelagnel/adeb.git
$ cd adeb

• Download an AMD64 image for use with adeb. The image is at the following URL
https://drive.google.com/file/d/1Dy2HKC5y11BNgZ01Z1kkM244DQWH7kfc/ and you must
place it under external/adeb/. Then you can prepare it:
$./adeb prepare --archive amd64_androdeb.tar.gz

• Now mount the tracing directory under /sys to adeb’s root filesystem – this will make
the formal /sys/kernel/tracing directory from Android’s root filesystem available in the
Debian chroot jail:
$ adb shell mount --bind /sys/kernel/tracing/ \
> /data/androdeb/debian/sys/kernel/tracing

• Finally, you can shell into AndroDeb:
$./adeb shell
root@localhost:/#

2. Fix AndroDeb’s BCC libraries to take into account Android 11’s tracing filesystem transition
from /sys/kernel/debug/tracing to /sys/kernel/tracing. Here, we’re going to be using a “dirty”
hack to replace the hard-coded paths in AndroDeb libraries with updated paths. WARNING:
the extra “/” characters in the perl command have to be accounted for exactly to replace the
number of characters in “debug”. All of the following commands are done in the AndroDeb
shell – the “root@localhost:/” part of the string is removed for brevity:

cd /usr/lib/x86_64-linux-gnu
cp libbcc.so.0.18.0 libbcc.so.0.18.0-orig
perl -pe 's:kernel/debug:kernel//////:g' libbcc.so.0.18.0 > cheat.so
cp cheat.so libbcc.so.0.18.0
cd /usr/lib/python2.7/dist-packages/bcc
cp __init__.py __init__.pyc-orig
perl -pe 's:kernel/debug:kernel/:g' __init__.py > __init__.py-fix
cp __init__.py-fix __init__.py
cd /

3. Try out some of the BCC tools inside AndroDeb:

© OPERSYS INC. 39/45

Embedded Android Exercises Version - 2021.11

• execsnoop
• filetop
• opensnoop

4. Snooping on Binder communication:
• Download “bindersnoop.py” from opersys.com/downloads/bindersnoop.py
• Push bindersnoop.py to the /tmp/ directory of AndroDeb
• Set bindersnoop.py as executable (chmod 755)
• Run bindersnoop to monitor Binder communication in Android

© OPERSYS INC. 40/45

Embedded Android Exercises Version - 2021.11

Platform Internals Exercises

© OPERSYS INC. 41/45

Embedded Android Exercises Version - 2021.11

1. Have the Brain App be a standalone app in packages/apps (in the case of the emulator) or
device/ti/beaglebone/ (in the case of the Beaglebone.) To make sure the app is part of
PRODUCT_PACKAGES, you'll need to modify build/target/product/generic_no_telephony.mk
(in the case of the emulator) and device/ti/beaglebone/beaglebone.mk (in the case of the
emulator). Follow the Phone app example on how to make your app a standalone app that
has a system service. You can use your existing system service as a basis for your new
system service in the Brain App.
2. The system service in the brain app should maintain an internal buffer which is fed from the
buffer your circular driver has; more on this below. The API of the system service in the brain
app should be:

String read(), which returns what's in its buffer
int write(), which writes a string to the system service's internal buffer
void clearBuffer(), which empties the circular buffer
boolean isThereContent(), which tells the caller whether there's content to read
long getLastWriteTime(), which returns the time at which the last write happens
int getReadStat(), which returns the number of read() calls made to the system service
int getWriteStat(), which returns the number of write() calls made to the system service
void setBufferToChar(char), which sets the buffer's content to a char value
void enableIntentOnContent(), makes it so that system service sends an intent when
there's new data
void disableIntentOnContent(), disables the intent on data
void registerCallbackInterface(), to allow an app to register a callback remote binder
interface
void unregisterCallbackInterface(), to deregister the remote callback interface

3. Create a thread in your system service that periodically reads the driver's buffer to fill the
buffer maintained by the system service. Instead of using the HAL to read from the driver, put
the code that was in opersyshw_qemu.c (in the case of the emulator) or
opersyshw_beaglebone.c (in the case of the BeagleBone) inside a C library that is called
through JNI by your system service. You'll have to get that library loaded by your app. Have
a look at the Hello JNI sample in the NDK.
4. Extend the Status Bar app to have a new overlay window such as the one displayed by
LoadAverageService.java; copy the latter and start from there. Have your new addition
connect to the system service in the Brain App and register a callback interface to allow the
system service to call the service back with new data added to the buffer. When new data
comes in, have your Status Bar extension display the new data as an overlay as the example
in the previous page shows. Have a look at the registerStatusBar() call part of the

© OPERSYS INC. 42/45

Embedded Android Exercises Version - 2021.11

IStatusBarService.aidl in frameworks/base/core/java/com/android/internal/statusbar/ for an
example of how a system service can allow a caller to register a callback interface.
5. Create a library that exposes the system service's API through a Java library that is
exposed to regular applications using an SDK add-on. Import the SDK add-on to your SDK
and create a sample application with Android Studio that can read() and write() to your system
service through the add-on.
6. Create a native daemon that listens to socket connections from the system service and also
receives remote connections from a host utility. The commands received from the system
service should be (assuming a text based interface like the one between installd and the
Package Manager):

“get_host_message”, to retrieve any messages buffered in the daemon from the host
utility
“new_data_in_buffer”, for sending new messages added to the system service' buffer

The system service should connect to the daemon through a Unix domain socket like the
ones in /dev/socket/ while the host utility will connect to the daemon through a classic IP port;
pick a port number of your choice. You'll want to extend the thread created earlier in the
system service to periodically poll the daemon for host messages.
7. Create a utility for using on the host to:

a. read new messages available from the daemon on the target
b. push new messages to the daemon on the target

At the end of this, you should be able to push a new message from the utility on the host and
have it display to the screen through the extension to the status bar.

© OPERSYS INC. 43/45

Embedded Android Exercises Version - 2021.11

Extra Exercises

1. Mark Zygote as “disabled” in init.rc and start it by hand after boot using the “start”
command.
2. Modify the bootloader parameters to have the system boot remotely from the network.

a. Create a “uEnv.txt” file on the “boot” partition of the micro-SD card to provide
appropriate values for the “net_boot” command to operate properly. You'll likely need to
set “serverip” to your host's IP address. You'll likely also want to set “rootpath” to the
location of your rootfs. To load environment variables from “uEnv.txt”, type:
U-Boot# mmc rescan
U-Boot# run loadbootenv
U-Boot# run importbootenv
b. Create a U-Boot image of the kernel built earlier
c. Configure your host for serving TFTP requests
d. Use TFTP to download image to target
e. Boot with image
f. Configure your host and your target so that the target's configuration is obtained at
boot time via DHCP and the rootfs is mounted on NFS.

3. Extend the “svc” command in frameworks/base/svc to make it capable of talking to the
Opersys system service, thereby allowing you to communicate with that system service
straight from the command-line. “svc” already implements commands for a couple of system
services (PowerManager, ConnectivityManager, TelephonyManager, and WifiManager).
4. Create app w/ EditText and Button that sends text entered in the text box all the way down
to the driver.
5. Create an app that acts as the home screen. You'll to have an activity with the following set
of filters:
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.HOME"/>
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>

Have a look at development/samples/Home for an example basic home app. You're not
expected to have a full app allowing the starting of other apps. Just make sure you can get a
“HelloWorld” to kick in right after boot up.
6. Implement a C-built system service and a corresponding C command-line utility that use
Binder to communicate. Have a look at:
frameworks/base/libs/surfaceflinger_client/ISurfaceComposer.cpp frameworks/base/services/

© OPERSYS INC. 44/45

Embedded Android Exercises Version - 2021.11

surfaceflinger/SurfaceFlinger.cpp frameworks/base/core/jni/android_view_Surface.cpp

© OPERSYS INC. 45/45

