
Linux Device Drivers                                                              Version - 2012.02

Exercises for

Linux Device Drivers

v 2012.02

WARNING:
The  order  of  the  exercises  does  not  always 
follow the  same order  of  the  explanations  in 
the  slides.   When carrying  out  the  exercises, 
carefully  follow  the  exercise  requirements. 
Read  every  exercise  in  its  entirety  before 
carrying out the instructions.

© OPERSYS INC.                                                                                                                    1/9



Linux Device Drivers                                                              Version - 2012.02

These exercises are made available  to you under  a Creative Commons 
Share­Alike 3.0 license. The full terms of this license are here:

https://creativecommons.org/licenses/by­sa/3.0/

Attribution requirements and misc.:

• This page must remain as­is in this specific location (page #2), 
everything else you are free to change; including the logo :­)

• Use of figures in other documents must feature the below “Originals 
at” URL immediately under that figure and the below copyright notice 
where appropriate.

• You are free to fill in the space in the below “Delivered and/or 
customized by” section as you see fit.

(C) Copyright 2005­2012, Opersys inc.

These exercises created by: Karim Yaghmour

Originals at: www.opersys.com/training/linux­device­drivers

Delivered and/or customized by:

© OPERSYS INC.                                                                                                                    2/9



Linux Device Drivers                                                              Version - 2012.02

IMPORTANT NOTES

• Many of the exercises below are open-ended.  The criteria for “success” is 
therefore your own appreciation of how much your level of understanding of 
the studied topic has increased in carrying out the exercise.

• Some exercises build on previous exercises.  Hence,  DO NOT discard the 
work you do once you’re done with an exercise.

© OPERSYS INC.                                                                                                                    3/9



Linux Device Drivers                                                              Version - 2012.02

Exercises   Day 1  

Chapter 1: On your host
1) Log in and install a guest Ubuntu VM.
2) Start the VM.  You now have a fully functional Linux system running within a sandbox. 
Anything you in the guest will be limited to the guest.  Hence, there is no danger of damaging 
your host system.  Whenever we test modules and drivers, we will do so in the guest.

Chapter 2:
1)  On your host: Go to a virtual console (CTRL+ALT+F2) and log in as root.  Now do the 
following:

# cat /dev/input/mice

If you move your mouse, you should now see your mouse's input dumped to your standard output. 
This will display weird text.  Typically, X window would have this device open.  This is a good 
illustration of how the “everything is a file” philosophy in Unix.  Once you're done testing this, 
log out and go back to your GUI (ALT+F7).
2) On your host: Given that everything is a file, including terminals, you can transfer data from 
one terminal to the next quite easily.  To try it out, open two terminals, in the first terminal, do the 
following:

$ tty | tee /tmp/example-tty

Now, go to the second terminal and do the following:
$ echo “Hello from `tty`” > `cat /tmp/example-tty`

Now go back to the first terminal, you should be able to see the string dumped by the second 
terminal.
3) User-space applications that interact with or provide status reporting about hardware  must 
often interact with specific filesystem entries to carry out their tasks.  To get a better idea of how 
this works, match the following commands with the set of directories or files they use.  There can 
be more than one directory or file being used, and there may be none.

Applications Directories
lspci /proc/net/unix
lsusb /etc/protocols
netstat -a /lib/modules/`uname -r`/modules.dep
ifconfig /sys/bus
modprobe /proc/net/if_inet6
lsmod /proc/ioports
insmod /lib/modules/`uname -r`/modules.aliases
rmmod /lib/modules/`uname -r`/kernel/...
depmod -e /proc/interrupts
hdparm /dev/hda /dev/hda
ps -e /sys/bus/pci/devices/...
uname -a /proc/cpuinfo

/proc/bus/usb
/proc/1/status
/proc/net/dev
/proc/net/tcp
/sys/modules/...
/proc/bus
/proc/iomem

© OPERSYS INC.                                                                                                                    4/9



Linux Device Drivers                                                              Version - 2012.02

/proc/modules
/proc/1/maps
/sys/bus/usb/devices/...

To check what filesystem accesses are carried out by an application try:
# strace application 2>&1 | grep ^open

Chapter 3:
1) Create a basic module with just an initialization function and an exit function.  Have both 
functions print something out to the console using printk().
2) Create a makefile for building your module using the one on p.24 of LDD3 as an example.
3) Build your module.
4) Load your module, verify that it’s been properly loaded, and unload it.  Make sure that the 
printk() messages you inserted have indeed been printed, either directly on the console or through 
the dmesg command.
5) Use the “nm” utility on your module to check the symbols therein defined.
6)  Add  the  MODULE_AUTHOR,  MODULE_DESCRIPTION  and  MODULE_LICENSE 
statements to your basic module, and recompile it.
7) Use the modinfo utility to look at the information exported by your module to the kernel.
8)  Try loading  your  module  with  MODULE_LICENSE set  to  “proprietary”.   Revert  that  to 
“GPL” for the rest of the exercises.  (Have a look at /proc/sys/kernel/tainted).
9) Have your module recognize a string parameter.  Modify your module so that the output it 
prints  on load indicates when the parameter is  absent, and prints  the parameter as part of its 
output when it is provided.
10) Use the EXPORT_SYMBOL macro to export the function 
void fct(){printk(“fct\n”);}
and EXPORT_SYMBOL_GPL statements to export
void gpl_fct(){printk(“gpl_fct\n”);}
from your module.
11) Create a simple add-on module that relies on the callbacks just  defined being present by 
calling them in the init function. For now, keep this add-on’s MODULE_LICENSE to “GPL”.
12) Try loading the add-on both with the basic module absent and then present.
13) Modify your add-on module’s MODULE_LICENSE to “proprietary” and try loading it.

Chapter 5:
1) Write a module that adds an entry in the /proc filesystem.  Have the /proc read callback print  
out the value of “jiffies” and the PID of the current process.
2) Browse around /sys and compare the content to the notes shown in the slides.  Notice how 
entries in /sys/bus/*/devices are all symbolic links back to /sys/devices/... 
3)  Write  a  module  that  registers  a  new type of  system bus  with  the  kernel’s  object  model. 
Populate this new bus with two phony devices.  Register one driver for each of these devices. 
These  additions  should  result  in  entries  being  created  in  /sys/bus/drivers  and  /sys/devices. 
Compare the results of your additions to what is presented by existing buses and devices.

© OPERSYS INC.                                                                                                                    5/9



Linux Device Drivers                                                              Version - 2012.02

4)  Write  a  hotplug  script  that  reacts  to  the  loading  of  one  your  phony  devices.  Check 
/sbin/hotplug, your script should be under /etc/hotplug/. Your script should write a messages with 
a timestamps to the system log (check logger).

© OPERSYS INC.                                                                                                                    6/9



Linux Device Drivers                                                              Version - 2012.02

Exercises   Day 2  

Chapter 6:
1) Write a module that creates two kernel threads running in parallel, see the kthread_run function 
(linux/kthread.h).   The threads  should  be created at  module  load time,  and killed  at  module 
unloading.  The threads should typically have a while(1) that calls on msleep_interruptible() for 
periods of 1ms for one thread and 3 ms for the other thread.  To terminate the kernel threads, use 
kill_proc function (linux/sched.h) and completions.
2) Have your driver declare two pointers to an int, and an actual int variable.  At startup, your 
module should set one of the pointers to the variable’s address and the other to NULL.  Also, at 
startup, your module should set the integer to zero.  Modify your threads so that they grab two 
locks (initially implement using semaphores) and then proceed to (this isn’t an optimal algorithm, 
but it proves the point):

1. Test which one of the pointers is NULL
2. Sets that pointer to the address in the other pointer
3. Sets the other pointer to NULL
4. Uses the pointer to which the address was assigned in #2 to increment the value of the 

integer.
One of the threads should sleep for 5ms in between grabbing both locks and the other thread 
should sleep for  5ms in between releasing both locks.   The delays inserted in  part  1 should 
remain, but must be outside any lock-grabbing code.  In order to be able to safely remove this 
module,  you will  need to  use kthread_stop() and kthread_should_stop().   Have a look at  the 
comments in linux/kthread.h for explanations on how to use these functions.
3) Modify the module created above to use spinlocks instead of semaphores.  You will need to 
determine  which  type  of  spinlock  is  appropriate.   You  may  need  to  modify  the  threads’ 
functionality so that they can use spinlocks.

Chapter 7:
Write a module that  registers a shared callback for the interrupt  used by the network driver. 
Having been loaded, your callback will be invoked every time there is traffic on the wire.  The 
callback should  tell  the  OS that  it  doesn’t  handle the  interrupt  so that  Linux feeds  it  to  the 
network driver.  Write the handler so that every 200 interrupts, it  prints  out a message using 
printk().  For this exercise, you'll need to use request_irq and free_irq.

Chapter 8:
1)  Use  TIMER_INITIALIZER,  add_timer  and  del_timer  to  add  a  timer-activated,  periodic 
callback to the module you wrote in chapter 6 and have it do the same accesses to the shared 
pointers. Modify the locking mechanisms appropriately.
2) Modify the module developed in chapter 7 so that it triggers a tasklet for every interrupt it  
receives.  Have the tasklet use printk() every 2 seconds to print out the number of interrupts that 
occurred.

Chapter 9: Difficult / Assumes knowledge of how to implement circular buffers

© OPERSYS INC.                                                                                                                    7/9



Linux Device Drivers                                                              Version - 2012.02

1) Create a module that exports primitives to other modules for:
1. Allocating memory areas
2. Deleting allocated memory areas
3. Atomically writing to an allocated memory area
4. Atomically reading to an allocated memory area

For 3 and 4 you will  need to maintain read and write pointers.   Start  by implementing your 
module so that it can hand out a maximum of 128kb (use kmalloc).  Here are some hints:

• Each allocate area should be implemented as a circular buffer with regards to 
reading and writing.

• Use spin_lock_irqsave() and spin_lock_irqrestore()
• Use only one “read” pointer and only one “write” pointer for each allocated 

memory area.
2) Modify the module developed in chapter 6 and extended in chapter 8 so that it uses the services 
of the module just implemented to log any access (a timestamp) to the shared integer value into  
an allocated buffer.
3) Modify the module implemented in exercise 1 of this chapter so that it can now serve buffers 
up to 2MB in size and provide an interface from /proc for reading the content of the buffer.  To 
simplify implementation, assume that the /proc callback only reads 4KB at a time.

© OPERSYS INC.                                                                                                                    8/9



Linux Device Drivers                                                              Version - 2012.02

Exercises   Day 3  

Chapter 11:
1)  Write  a  char  driver  that  implements  the  read/write/open/release  methods  on  top  of  the 
mechanism implemented in chapter 9.  You will need to create appropriate entries in /dev for 
applications to be able to access your “device”.  Having created those entries, you should be able 
to use the “cat” and “echo” commands to read and write, respectively, from and to the device.  An 
“echo” should result in your driver recording what’s being fed by the “echo” command, and a 
“cat” should result in the reading of what had been previously fed into it.  For this part, assume 
that reading from an empty buffer results in telling user-space that the file is empty.
2) Modify the mechanism implemented in chapter 9 so that it allows blocking I/O.  Specifically, 
make it so that when the user-space does a read on the character device, it will wait if the device 
is empty until something gets written to it.

Chapter 12:
Modify the driver implemented in chapter 11 so that it  provides a block device interface for 
accessing the buffer. Add the appropriate /dev entry for the block device (mknod), and use a user-
space application (fdisk) to read/write to the device.

Chapter 13:
1) Modify the driver implemented in chapter 11 and extended in chapter 12 to also provide an 
Ethernet  network interface.   In effect,  any application  reading from a socket  attached to  this 
device should receive input as a result of any writing to the shared buffer.  You will need to use 
ifconfig to “configure” your newly created device.
2) Write a user application that opens a socket, binds to the network interface and reads input 
from it.
3) Modify the module that was developed and extended in chapters 6, 8, and 9 so it feeds its log 
writing into the shared buffer, therefore automatically generating “network traffic”.
4) Modify the module that was developed and extended in chapters 7 and 8 so that it too feeds 
content into the shared buffer as a result of the interrupts it receives.

© OPERSYS INC.                                                                                                                    9/9


