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Abstract

Analyzing and understanding the behavior of real-time embedded systems is a complex task. Often,
developers resort to ad-hoc methods in order to understand the behavior of their systems and isolate
bugs. Answering this need, some commercial RTOS vendors have made available different types of tools
to understand their product’s behavior. The effectiveness of such tools vary, but they are usually quite
expensive, which proves to be a barrier to entry when wanting to design any system using an RTOS.

The RTAI extensions to the Linux Trace Toolkit presented here take these barriers away and provide
developers with an open-source set of tools to analyze and understand the behavior of any RTAI-based real-
time system. This analysis involves presenting RTAI’s behavior in a control-graph form and presenting
statistics regarding the overall system behavior including all the real-time tasks that ran. Furthermore,
tracing such a system involves an overhead of, at most, 1 micro-second per event, which is very acceptable

behavior for most real-time systems.

1 Introduction

In the course of developing a real-time embedded sys-
tem, there arises situations where a clear understand-
ing of the system’s different components’ dynamics is
needed. Using this understanding, system develop-
ers can then isolate performance bottlenecks, solve
hard to catch synchronization problems or simply
present outside observers with a thorough descrip-
tion of the system’s behavior. On the hardware level,
this might involve the use of different types of probes
and sensors that give precise measurements of the
different hardware involved. At the other end, on
the application level, this might involve using per-
formance profilers to isolate bottlenecks or symbolic
debuggers to find bugs in the source code. Yet, be-
tween both extremes lies a need to understand the
overall behavior of the software without modifying
it’s dynamics. Therefore, there are three levels of de-
tail needed when wanting to understand the behavior
and dynamics of a real-time embedded system: the
hardware level, the system level and the application
level.

As the current market trends show, the need for
hardware level probing equipment is likely to be su-
perseded by the need for system level probing soft-
ware/equipment given the rising trend in using off

the shelf equipment to build real-time embedded sys-
tems. This trend is likely to be even more impor-
tant for designers planning to use a real-time Linux
derivative as the basis of their system since the hard-
ware platforms supported by Linux are more than
often quite mature.

That said, contrary to many other operating sys-
tems used in an embedded real-time environnement,
as will be discussed in section 6, no real-time Linux
variant offers any set of tools enabling designers to
understand the dynamics of the system being devel-
oped. Developers, therefore, have to resort to ad-hoc
methods to “visualize” the dynamic behavior of the
system they are developing. This often means in-
serting variants of the printf() call at key parts in
the code, with all the penalties involved.

Hence, the need for a complete and flexible sys-
tem level monitoring and analysis tool for real-time
Linux. It needs to be “complete” in the sense that
it has to address all the aspects of a real-time Linux
system and “flexible”, in order to easily accommo-
date the different environnements where a real-time
Linux system is used. To fully convey the dynamic
behavior of a real-time Linux system, the tool, or
set of tools, needs to: describe the sequence of key
events that occurred during the period of time when
the system is observed, present the related statistics



and provide a complete detail of the events that oc-
curred and their impact on the system.

The methods and tools discussed below are based on
previous work done on the Linux Trace Toolkit which
enables run-time tracing and off-line reconstruction
of the dynamic behavior of the Linux kernel as de-
scribed in [13].

In section 2 the details of the data collection methods
used are presented. Section 3 discusses the details
of the implementation of the trace toolkit RTAT sup-
port. Section 4 describes how the toolkit can be used
to trace an RTAI/Linux system and provides some
examples. Section 5 provides a couple of examples of
the use of LTT to understand the behavior of a live
RTAI system. Section 6 presents some related work.
Section 7 discusses future directions.

2 Data collection architecture

Following the modular design philosophy adopted as
the basis of the previous LTT work [13], the RTAI
additions to LTT are composed of independent soft-
ware modules. The interactions between these mod-
ules are as presented in figure 1. In addition to the
basic modules, an RTAT trace facility has been added
in order to provide the instrumented RTAI with a
single entry point for tracing. Both trace facilities
still use the same trace module which has been mod-
ified for this purpose. This allows the upper layer
tools’ interactions with the trace module to remain
unmodified and ensures that there is a single system-
wide repository for traces.

The arrows in figure 1 presents the flow of informa-
tion through the tracing process. The initial sources
of trace data are: the Linux kernel, the RTAI core
and the different RTAT modules instrumented. Basi-
cally, all the primary sources of information feed the
key events to the corresponding trace facility which
forwards those onto the trace module. The trace dae-
mon then reads the data collected by the trace driver
and commits it to file. Note that the trace module
itself is visible from user space as an entry in the
/dev directory, hence facilitating configuration and
interaction. Apart from the additional trace facility
and the additional event sources, the scheme used is
identical to the one used for the basic LT'T operation.
Since the basic LTT architecture has been covered
elsewhere [13], the following discussion will be lim-
ited to the additions to this architecture in order to
allow RTAI to be traced. Section 2.1 discusses the
RTATI trace facility. Section 2.2 discusses the RTAI
instrumentation. Section 2.3 will discuss the Linux
kernel trace facility. Section 2.4 discusses the instru-
mentation of the Linux kernel. Section 2.5 discusses
the trace module. Section 2.6 will discuss the trace

daemon. Finally, section 2.7 will introduce the data
analysis and presentation software.

2.1 RTALI trace facility

The RTAI trace facility is an addition to the already
existing facilities in RTAI. As with other RTAI fa-
cilities it is implemented as an independent kernel
module. It’s main purpose is to provide all RTAI
modules with a single entry point for event tracing.
Though, it does not log any events. It only forwards
them onto the trace module, if it has been loaded.
If the trace module hasn’t been loaded, then traced
events are ignored by the trace facility.

In order to fulfill it’s role, the trace facility provides
three main functionalities: a unified RTAI trace func-
tion, a trace module registration function and a trace
module unregistration function. For the trace mod-
ule to receive RTAT events, it has to register itself
with the RTAI trace facility providing it with a call-
back function. This callback function will be called
upon every time an RTAI event occurs. Typically,
this is the same function that the trace module pro-
vides the Linux kernel trace facility. Hence, the uni-
fied trace repository.

Contrary to the Linux kernel trace facility, the RTAI
trace facility provides no configurable option. At
least, not yet. Though, it does have a very simi-
lar functionality which is to provide a link between
the different RTAI modules and the trace module.

2.2 RTAI instrumentation

The RTAI instrumentation is a very important com-
ponent of the LTT support for RTAI as it determines
what information is retrieved from the different RTAI
modules. As with the Linux kernel instrumentation,
there are different types of events each with its set
of fields to describe it. Since some events belong to
the same type of functionality or to the same RTAI
module, event sub-types are often used to identify an
event among the group of events to which it belongs.
Contrary to the Linux kernel which has a single en-
try point for its user services, the system call trap,
RTAI has many entry points into its services. That
is, to access Linux kernel services, user-space tasks
all have to go through the system call trap. To ac-
cess RTAI services, though, RTAT tasks call on the
service’s API directly, which forces the instrumen-
tation of all entry points into RTAI services. This
was simpler in Linux since only the system call trap
had to be instrumented in order to identify which
service was being called on. Consequently, there are
far more events instrumented in RTAI than in the
Linux kernel. Figure 2 presents the RTAI events and
categories of events traced by LTT.
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Figure 1: LTT architecture with RTAI support.

Also, as with kernel instrumentation, RTAI instru-
mentation can be disabled during kernel configura-
tion by enabling or disabling it during the “Kernel
tracing” configuration step.

2.3 Kernel trace facility

The kernel trace facility has not changed with the
addition of RTAT support to LTT. Although it has
seen some interesting additions such as a general-
ized event hooking mechanism enabling loadable ker-
nel modules to hook on to certain events. Its main
purpose, of providing a link between the trace mod-
ule and the different kernel facilities, remains un-
changed.

2.4 Kernel instrumentation

As the kernel trace facility, the kernel instrumen-
tation has not changed with the addition of RTAI
support to LTT. The key Linux kernel events traced
remain the same as described in [13]. Kernel instru-
mentation is configurable as is RTAI instrumenta-
tion. Although the former is necessary for the later.

2.5 Trace module

The trace module’s main purpose is to record the
event descriptions into its trace buffers. This in-
volves retrieving additional information about the
event such as the ID of the CPU where the event
occurred and a timestamp. In order to enable large
amounts of data to be collected, a double-buffering
scheme is used whereby a buffer is used to write the

incoming events while the other buffer’s content can
be committed to file by the trace daemon. Since
copying data from the buffer to user space into the
daemon’s memory and then to kernel space during
file committing is expensive, the trace module im-
plements the mmap() interface that enables the trace
daemon to map the module’s buffers into its own ad-
dress space. Therefore, when committing, the dae-
mon provides the file-system interface with its own
pointer to the trace data without having to copy said
data prior to commit.

The main modification to the trace module in order
to support RTAI tracing is the use of real-time safe
locking mechanisms when writing event data rather
than the use of ordinary Linux kernel locking mecha-
nisms. This is necessary to ensure that regardless of
the event, its description’s logging will be atomic. Al-
though this raises the issue of ordinary Linux events
having priority on RTAI events, it should be noted
that recording an event’s occurrence takes less that
a micro-second. Also, the trace module can be con-
figured using event masks through the trace daemon,
enabling the developer to ignore non-critical or cum-
bersome information. Therefore, this should not be
a problem when tracing a system.

2.6 Trace daemon

The trace daemon is the main user side tool to con-
trol tracing. It provides its user with a number of
command-line options which enable him to control
all the details of the tracing process. Its second pur-
pose is to handle the data accumulated in the trace
module’s buffers and get it to be committed to file for



Event type | Number of subtypes | Event detail

RTAI mount N/A None

RTAI un-mount N/A None

Global IRQ entry N/A IRQ ID and level flag (kernel vs. user space)
Global IRQ exit N/A None

CPU own IRQ entry | N/A IRQ ID and level flag

CPU own IRQ exit N/A None

Trap entry N/A Trap ID and corresponding address
Trap exit N/A None

SRQ entry N/A SRQ ID and level flag

SRQ exit N/A None

Switch to Linux N/A CPU ID where switch occurred
Switch to RT N/A CPU ID where switch occurred
RT-Scheduling change | N/A Incoming task, outgoing task and outgoing task state
Task 12 Sub-type and 3 fields

Timer 5 Sub-type and 2 fields

Semaphore 6 Sub-type and 2 fields

Message 6 Sub-type and 3 fields

RPC 4 Sub-type and 3 fields

Mail-box 10 Sub-type and 3 fields

FIFO 26 Sub-type and 2 fields

Shared memory 5 Sub-type and 3 fields

POSIX 44 Sub-type and 3 fields

LXRT 8 Sub-type and 3 fields
LXRT-Informed 10 Sub-type and 3 fields

Figure 2: RTAI events traced.

offline post-processing. Apart from recognizing the
existence of RTAI events for the setting of the event
masks by the user, the trace daemon is not different
from the standard LTT trace daemon as discussed
in [13].

2.7 Data analysis and presentation
software

The data analysis and presentation software is the
most crucial component of the Linux Trace Toolkit
as the developer’s understanding of the system’s be-
havior largely depends on its ability to provide a
complete and precise description of the system’s dy-
namics while remaining as simple as possible in its
presentation of the data and the underlying analysis.
Using the event sequences, the analysis software re-
constructs the states in which the system was in and
extracts system statistics. The system states are dis-
played as a control graph where the x axis is time and
the y axis a software entity such as a process, a real-
time task, the kernel or the RTAT core. Vertical lines
therefore mark control transitions from one entity to
another and horizontal lines mark time spent within
code belonging to the corresponding entity. More-

over, every transition into system services or facili-
ties, such as a system call or a hardware interrupt, is
paired with a icon and text describing the event that
occurred. This type of display provides the user with
a clear view of the transitions that occurred and the
reason of their occurrence.

Along with this graphical view, the system events
can be viewed in the form of a time-ordered list where
all events are detailed in full. This enables further
manual trace analysis by the developer.

Summing up all the information collected, a third
display provides the developer with a set of statis-
tics regarding the system’s behavior. In the case of
the basic Linux kernel, the statistics displayed su-
persede the data presented by tools such as ps since
the statistics displayed by LTT are not approxima-
tions but relate the exact entries and exists from and
into the different software components. Moreover,
some other statistics displayed are simply not avail-
able through the standard /proc interface.

Facilitating the transition from one system view to
the next, shortcut menu items are provided in case
the developer needs to view more information regard-
ing an event or requires the statistics regarding the
software entity within which the event occurred.



3 Toolkit implementation

Understanding how key parts of the tracing system
are implemented is necessary for further enhance-
ment or expert usage. The following sections discuss
each of the most important RTATI additions to LTT
and the most important basic LTT code details. Sec-
tion 3.1 discusses the main trace facility entry points
and how they can be used. Section 3.2 discusses the
trace statements and how they are used. Section 3.3
discusses the modifications brought to the trace mod-
ule in order to support RTAT tracing. Section 3.4
covers the additions made to the visualization tool
in order to view the behavior of an RTAI/Linux sys-
tem.

3.1 Trace facilities entry points

As discussed in section 2.1 and 2.3, both RTAI and
the standard Linux kernel have a tracing facility.
While both serve the same end, they have differences
and are used to record two completely different sets
of events. The following covers each trace facility’s
services and how they are used.

3.1.1 Linux kernel trace facility

The Linux kernel trace facility is part of the basic
implementation of LTT. It provides the following ser-
vices:

e Trace module registration:
register_tracer()
This takes a callback function as a parameter
and sets it as being the function to be called
upon the occurrence of an event and returns
an error code. This is the function used by the
trace module to register its tracing function.

e Trace module de-registration:
unregister_tracer ()
Takes the already registered callback function,
verifies it is the one currently used for tracing
and unregisters it. Again, an error code is re-
turned.

e Configure tracing:

trace_set_config()

Enables the trace module to setup different
trace parameters such as the depth at which
the caller’s address should be retrieved upon a
system call or the address range to which this
address should belong. These settings are then
used by the function that traces system call
entries to fetch the desired information.

e Get configuration:
trace_get_config()

Provides the caller with the current tracing
configuration as setup using the above men-
tioned function.

e Register event callback:
trace register_callback()
The caller of this function provides a function
callback and an event ID. Thereafter, any oc-
currence of the given event ID will result in the
calling of the given function.

e Unregister event callback:
trace unregister_callback()
Used to unregister a callback registered using
the previously mentioned function.

e Trace event:
trace_event ()
The unified kernel trace function called upon
the occurrence of all kernel events. This is
where the trace callback function provided by
the trace module is called upon. Also, this is
where registered callbacks are summoned.

Apart from the registration of arbitrary callback
functions, all other functions are used in order to
implement tracing of the Linux kernel.

3.1.2 RTALI trace facility

The RTALI trace facility is one of the additions neces-
sary to bring LTT support for RTAI The following
are the services provided by this facility:

e Trace module registration:

rt_register_tracer()

As the kernel registration function, this takes
a callback function as a parameter and set it
as being the function to be called upon the oc-
currence of an event and returns an error code.
This is the function used by the trace module
to register its tracing function. The later is the
same as the one provided by trace module to
the kernel trace facility.

e Trace module de-registration:
rt_unregister_tracer ()
Takes the already registered callback function,
verifies it is the one currently used for tracing
and unregisters it. Again, an error code is re-
turned.

e Trace event:
rt_trace_event()
The unified RTAI trace function called upon
the occurrence of all RTAI events. This is
where the trace callback function provided by
the trace module is called upon.



All trace statements end up calling upon the
trace_event service. Whether this ends up calling the
trace module tracing function or not, the facility will
serve its purpose by providing a unified interface for
all trace statements.

3.2 Trace statements

The trace statements are at the basis of the tracing
system. They are placed on the execution path of
important system services code. These statements,
although they can be made not to generate code,
they are designed not to modify the flow of the code
they are inserted to. This is an example trace state-
ment:

TRACE_RTAI_SCHED_CHANGE() ;

Actually, it is a C macro and is used as a normal C
function by passing it the required parameters. In
this case the complete call is:

TRACE_RTAI_SCHED_CHANGE
(rt_current->tid, new_task->tid, rt_current->state);

This particular trace statement is used to monitor
scheduling changes within the RTAI uniprocessor
scheduler. All the other trace statements closely re-
semble this example. They are all C macros defined
within the trace header file and are set to generate
code if tracing is enabled. Otherwise, these macros
generate no code at all. Here is the complete defini-
tion of the macro above, when tracing is enabled:
#define TRACE_RTAI_SCHED_CHANGE(OUT, IN, OUT_STATE) \

do \

EAY

trace_rtai_sched_change sched_event;\

sched_event.out (uint32_t) OUT;\

sched_event.in (uint32_t) IN;\
sched_event.out_state (uint32_t) OQUT_STATE; \
rt_trace_event (TRACE_RTAI_EV_SCHED_CHANGE, &sched_event);\
} while(0);

When tracing is disabled, the definition is as follows:

#define TRACE_RTAI_SCHED_CHANGE(OUT, IN, OUT_STATE)

The  complete list of  statements and
necessary  definitions can be found in:
[rtai base directoryl]/include/rtai trace.h

3.3 Modifications to the trace module

The main modification to the trace module is the
usage of real-time-safe locking mechanisms. Hence,
rather than using the

spin_lock_irqsave() /spinunlock_irqrestore()
pair, the rt_spin_. .. variants are used for the crit-
ical region where the event data is logged. This
ensures the integrity of the data buffers. Note that
when RTAI tracing is disabled, the conventional
locking mechanisms are used.

3.4 Additions to the visualization and
analysis tool

The visualization and analysis tool is the LTT com-
ponent that has had the most additions in order to
provide the capability of handling RTAT traces. This
is mainly due to the fact that the behavior of an
RTAI/Linux system can be fairly complex. Whereas
with the plain Linux kernel, the system was either
in kernel state or in process state, in an RTAI/Linux
system there are four states in which the system can
be in: RTATI core, RTAI task, Linux kernel and Linux
process. Furthermore, the transitions from one state
to another can sometimes be ambiguous. That is, for
a same sequence of events, it is not always easy to
determine which state transition took place, if any.
At the time of this writing, the state machine used
within the visualization tool to reconstruct the be-
havior of an RTAI/Linux system isn’t 100% accu-
rate, but it’s fairly close. The main shortfall be-
ing the fact that scheduling changes made by the
LXRT subsystem aren’t recognized as state-changing
events. This, though, does not constitute much of a
problem since most LXRT scheduling changes occur
close to RTAI scheduling changes and, as such, the
state machine used reconstructs the system’s behav-
ior correctly. Although it would be interesting to
discuss how the state machine is built and used in
detail, the scope of such a discussion goes beyond
the purpose of this writing.

Since the behavior of a normal Linux kernel without
RTALI differs greatly from the behavior of an RTAI-
controlled Linux kernel, the analysis made is differ-
ent and so is the state machine modeling the system’s
behavior. That said, and in an effort to promote fu-
ture additions to LTT, the data decoding and anal-
ysis layers of the visualization tool have been gener-
alized in order to recognize different types of traces.
Given a trace type, different functions and tables are
used. Some modifications were also made to the dis-
play layers since an RTAI/Linux system has different
characteristics from a plain Linux system and some
additional information has to be displayed regarding
system analysis.

Hence, the addition of the following files to the visu-
alization tool’s source code:

e Tables.c which contains the tables manage-
ment code.

e Tables.h which contains the tables abstrac-
tions.

e LinuxEvents.h which contains the list of all
the Linux event definitions.



e LinuxTables.c which contains the Linux spe-
cific tables.

e LinuxTables.h the Linux tables header file.

e RTAIEvents.h which contains the list of all the
RTAI event definitions.

e RTAIDB.c which contains the code necessary to
analyze a trace containing RTAI data.

e RTAIDB.h the RTAI database header file.

e RTAITables.c which contains the RTAI spe-
cific tables.

e RTAITables.h the RTAI tables header file.

Using the work already done to add RTAI support
into LTT, adding LTT support for other systems
should be a matter of providing the right analy-
sis functions and corresponding tables. Most of the
work having to be put in would regard the writing of
the state machine describing the system to be sup-
ported.

4 Toolkit usage

This section attempts to provide a broad yet brief
overview of how LTT can be used to trace and ana-
lyze RTAI/Linux systems. An emphasis is put on the
actual usage of the tools, the theoretical and imple-
mentation details having already been covered. Sec-
tion 4.1 discusses the details of the configuration of
the RTAI-patched Linux kernel in order to support
tracing. Section 4.2 discusses the loading sequence
of the different RTAI modules. Section 4.3 discusses
how to trace the operation of an RTAI/Linux system.
Section 4.4 discusses the actual display and analysis
on an RTAT trace.

It is important to note that no matter how thorough
the discussion is and how efficient LTT is in providing
an exact reconstruction of the system, it is expected
that the designer using LTT has to acquire a certain
knowledge about the internals of RTAI and Linux in
order to fully appreciate the information generated.
This discussion does not attempt to cover such top-
ics, although the usage of LTT makes it easier to
grasp the underlying dynamics. Also, the discus-
sion does not attempt to reproduce the instructions
provided in the LTT help files, but rather aims at
enriching them.

4.1 Compilation pre-requisists

Having installed the Linux kernel and RTAI sources
and patched each with the related LTT patch, as de-
scribed in the help files found with the LTT sources

and on the project’s web site [1], the next step is
to configure the kernel. Note that this step is fully
described in the LTT help files.

During kernel configuration, to enable kernel and
RTALI tracing, the “Kernel events tracing support”,
in the “Kernel tracing” menu, must be set to module
and the “RTAI event tracing support” must be set
to “yes”. The reason that kernel tracing has to be
selected as module is that the trace module has to
be loaded after the RTAI trace facility is loaded, if
RTALI tracing is to be enabled. Since the RTAI trace
facility cannot be loaded prior to the kernel bootup,
RTALI tracing cannot be supported if the trace mod-
ule is built into the kernel.

Once this is configured and the rest of the configu-
ration is complete, the building of the dependencies
and the compilation of the kernel itself can be carried
out.

4.2 Module loading sequence

Given the architecture outline in figure 1, the load-
ing of the different RTAI and LTT modules has to
follow a certain order. If this order is not followed,
the loading of the modules will fail. The following as-
sumes that the system is running an RTAI patched
kernel configured with RTAI tracing enabled.

The first module to be loaded is the RTAI trace
facility as all other RTAI modules need the ser-
vices provided by this module in order to trace
events. Remember that the trace statements inserted
into the different execution paths of the different
RTATI modules generate code which ends up calling
the services RTAI trace facility, more precisely the
rt_trace_event () function. Once it is loaded, the
rest of the modules can be loaded following the order
required by the architecture of RTAI.

The second module to be loaded is optional and, in
a sense, it does not have to be the second module
loaded. It is the trace module or trace driver (in the
code, it is often refereed to as the “tracer”). If one
tried to load this module prior to the loading of the
RTALI trace facility, the module installation service
would complain about unresolved symbols. The rea-
son is that the trace module registration functions
offered by the RTAI trace facility would be missing,.
Once the trace module is loaded, it registers with the
Linux kernel trace facility and the RTAI trace facil-
ity. Thereafter, the trace daemon can be activated
and events logged.

The third module to be loaded is the RTAI core, of-
ten compiled simply as “rtai”. The rest of the mod-
ules loaded depends on the use to be made of RTAI.
Usually, the next module is the RTAT scheduler often
followed by the FIFO facility.



4.3 Tracing the system

Once all the modules have been loaded, tracing can
start. In order to trace a given set of tasks compiled
within a single module or a set of processes set to
become hard real-time using LXRT, the sequence of
operations to be conducted is the following;:

1. Start the trace daemon with the appropriate
arguments. Most importantly, set tracing du-
ration, if any. During this step, output files
have to be provided in order to store the traces
generated.

2. Load the required task module(s) or start the
required processes.

3. If the trace daemon was not started with a time
limit, stop the trace daemon once the traced
events have occurred.

4. If the trace is to be analyzed on the same ma-
chine as the one on which it was generated, it
is recommended that the real-time tasks traced
be stopped. This, since real-time tasks have
priority on all other tasks as to CPU control.
Therefore, running real-time tasks while trying
to run normal Linux processes might hinder the
latter’s performance.

That done, it is now possible to view the generated
traces.

4.4 Viewing collected traces

Given the generated trace file and system descrip-
tion, the visualization tool will display a window with
three main thumbnails. The first contains the control
graph. The second contains the statistics. The third
contains the raw list of events in full detail. Note
that the data displayed in graphical form can also
be outputed in a text file using the visualization tool
as a command line tool. The generated file can then
undergo further analysis using scripts. The next sec-
tion will provide examples of the screens mentioned
above.

5 Examples

This section’s purpose is to provide real life examples
of how LTT can be used to understand the behavior
of an RTAI/Linux system. Each of the examples cho-
sen shows how different situations can profit from the
insight LTT provides. Section 5.1 presents the usage
of LTT on the “jepplin” example provided in the ex-
amples directory within the RTAI source code. Sec-
tion 5.2 shows how regularity occurs within the “task

timer” example. Section 5.3 discusses how LTT was
used to show how RTNet [2] achieves hard real-time
networking performance.

5.1 Jepplin

The jepplin example consists of a set of real-
time tasks communicating through mailboxes and
semaphores. The scheduling of the tasks depends
on the messages they are waiting for. Inversely, the
messages sent by a task can trigger the scheduling
of another real-time task. Figure 3 displays a por-
tion of the control-graph of the transitions due to
the jepplin tasks interacting. Figure 4 displays the
corresponding list of raw events. We can see the
state transitions and the corresponding detail of the
events and how they impact the system’s dynamics.
Most importantly, we can see how the communica-
tion between the tasks generates scheduling changes.
If there were any synchronization problems, this type
of view would help in isolating the problem

5.2 Task timer

The task timer example’s purpose is to show that
RTATI is able to “guarantee an effective processing
with a contained jitter and high effectiveness”, as the
explanation reads. It launches three tasks during ini-
tialization, the first two are meant to be scheduled
at regular intervals to do calculations and the third
is used to print out information about the executions
times. The point here is to test RTAI given a cer-
tain load. Figure 5 shows that the task scheduling
follows a regular pattern with correct timings. Fig-
ure 6 shows the statistics for the execution of one of
the two processing tasks. Here, the task is scheduled
for almost 28% of the time. Also, not showed, LTT
shows that the first task has been granted an equal
percentage of the cpu share, 28%. The results give
a good appreciation about the time taken to do a
calculation loop by each task and confirm that RTAI
was able to guarantee effective processing. This type
of result could further be used to measure calculation
loops and apply the necessary corrections in case the
system does not accomplish the required processing
in a “reasonable” time.

5.3 RT-Net

RTNet is a package written by David Schleef that en-
ables hard real-time communication to take place us-
ing an ethernet link. The programming interface pro-
vided by RTNet is very similar to the BSD socket in-
terface available on most Unix-like systems. In order
to test RTNet’s capabilities, the client/server exam-
ple provided with the RTNet source code was used.
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Two hosts were linked using an 100Mbits Ethernet
connection using a crossover cable and the client
host was monitored using LTT. Figure 7 presents
the control-graph of the sequence of events that oc-
curred on the client as he sent a packet and received
a reply.

On the graph, we can see the system timer firing off
(TIRQ 0) and waking up the client (the client was set
up during it’s initialization to be called once every
second). The client sends something on the net. This
generates an IRQ 9. RTAI then decides to schedule
task 0, the Linux kernel, since the kernel timer func-
tion has to be called. This results in “klogd” (PID
= 453) to be rescheduled. klogd calls on the “time”
system call but while the kernel is dealing with this
call, another IRQ 9 occurs. This one marks the re-
ception of the echo from the server. Immediately,
RTAI schedules the reception function of the client
which does some processing and yields CPU control.
RTAI then hands the CPU back to Linux which can
continue to process klogd’s system call.

Figure 8 shows the list of interrupt occurrences we
got from the visualization tool, used as a command-
line tool, to dump the trace into a file in text format
by providing the correct flags to filter the interesting
events.

These should always be considered in couples. The
first TRQ marks the sending and the second one
marks the reception. Notice that round-trip commu-
nication always stays between 63 to 65 microseconds.
Hence the deterministic nature of RTNet communi-
cation.

6 Related work

Although LTT support for RTAT is the first trace
support available for a real-time Linux variant, it
isn’t the first tracing system to exist. Tracing has
actually been around for some time, though no trac-
ing tool other than LTT is available under the GNU
GPL [3] or any other form of open-source license.
Nonetheless, it is important to stress that some of
these commercial systems provide capabilities still
unavailable in LTT. Also, note that prior to enabling
RTAI tracing, LTT was first and foremost a toolkit
to enable tracing of the Linux kernel, a capability
previously unavailable.

In the realm of general purpose operating systems,
we find, apart from LTT, that IBM and SUN have
tracing systems. IBM has been providing for some
time now a tracing facility for it’s AIX system [4].
The main advantage of that system is its flexibil-
ity as it is fairly easy to add new events through
the /etc/trefmt file. IBM does not have any tool to
graphically view or analyze the event sequences al-

though some visualization research projects do use
ATX’s facility to retrieve data to be graphically dis-
played [5]. SUN uses a format they call TNF (Trace
Normal Form) on which they base their tracing sys-
tem and tools [6]. Although, the tool set provided by
Sun contains a graphical viewer, the information dis-
played is hard to follow and does not match the qual-
ity of display provided by visualization tools avail-
able for commercial RTOSes.

In the embedded/real-time world, a slew of trac-
ing tools are available from different vendors. First
and foremost, WindRiver’s WindView system [7]. It
is by far the most elaborate tracing and visualiza-
tion tool available providing graphical configuration
of the tracing process and different levels of config-
urability of the trace analysis. QNX, another com-
mercial RTOS vendor, has a tracing tool called De-
jaView [8]. Apart from a press release, the author
was unable to find further details about this tool.
Other tools available for embedded/ real-time de-
bugging include Etnus’ TimeScan [9], Lauterbach’s
Trace32 [10], TimeSys’ TimeTrace [11] and Nema-
tron’s Hyperkernel trace utility [12]. Although this
is not an exhaustive list, it does show that there are
many tracing tools available for the development of
real-time/embedded systems.

7 Future directions

The Linux Trace Toolkit has been successfully used
by many to understand the behavior and dynam-
ics of the Linux kernel for some time now. Lately,
RTAT support has enhanced LTT’s capabilities and
provided the real-time Linux community with a flex-
ible and effective tracing tool. As usage grows and
new applications for LTT are found, there is a need
to extend and augment it. There are many areas of
evolution where LTT can/will evolve.

First and foremost, extending support for other plat-
forms than the i386. By this, the aim is to bring
tracing support to the other architectures on which
the Linux kernel can run. Parallel to this and given
the abstractions built into the analysis and visualiza-
tion tool, LTT will aim at adding tracing support for
other operating systems. Mainly, open-source ker-
nels such as BSD and GNU Hurd’s base, Mach. This,
though, does not exclude commercial vendors from
instrumenting their own kernels and making avail-
able the code necessary for their traces to be ana-
lyzed by LTT under the GPL.

Given the current market trends and, consequently,
users’ needs, adding remote-tracing capabilities will
be important. This will enable users to trace re-
mote systems without needing to store the cumu-
lated traces on the traced system. This is most im-
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RT-Global IRQ entry 968,993,482,135,788 0 7 IRQ : 9, IN-KERNEL
RT-Global IRQ entry 968,993,482,135,853 453 7 IRQ : 9, IN-KERNEL
RT-Global IRQ entry 968,993,483,135,578 0 7 IRQ : 9, IN-KERNEL
RT-Global IRQ entry 968,993,483,135,643 453 7 IRQ : 9, IN-KERNEL
RT-Global IRQ entry 968,993,484,135,364 0 7 IRQ : 9, IN-KERNEL
RT-Global IRQ entry 968,993,484,135,429 453 7 IRQ : 9, IN-KERNEL
RT-Global IRQ entry 968,993,485,136,148 0 7 IRQ : 9, IN-KERNEL
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RT-Global IRQ entry 968,993,488,135,584 453 7 IRQ : 9, IN-KERNEL
RT-Global IRQ entry 968,993,489, 135,304 0 7 IRQ : 9, IN-KERNEL
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RT-Global IRQ entry 968,993,490,135,153 453 7 IRQ : 9, IN-KERNEL

Figure 8: RTNet example: List of client network card interrupts.



portant for embedded systems as they often do not
have permanent storage devices. Along with this,
the capability of remotely configuring tracing will be
necessary.

Since LTT might be used for custom event tracing,
the addition of custom created events is a priority.
This will enable developers to use the tracing capa-
bilities to trace events that they create and that have
a specific meaning according to their system.

8 Conclusion

This paper has introduced and discussed the trac-
ing of the RTAI real-time Linux system using the
Linux Trace Toolkit. The paper has shown that
LTT is based on a modular and extensible system
behavior tracing architecture. The traces generated
by this system have been shown to recreate actual
system behavior with great accuracy. Also, tracing
an RTAI/Linux system using LTT is relatively sim-
ple, which makes it accessible to a large audience.
Given the popularity of real-time Linux systems and
their inherent complexity, LTT for RTAI will likely
be helpful to a large number of real-time Linux en-
thusiasts.
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