
November 2004 www.sysadminmag.com Sys Admin — 41

Debugging an application or kernel program can be done with
the GNU Debugger (gdb), Linux Kernel Source Level
Debugger (kgdb), or Linux Kernel Debugger (kdb), but if we

want to trace a particular process, we must use the strace utility,
which will trace system calls and signals. Strace will trace only one
process and present the result in text form. To trace many processes in
a given period of time, Linux Trace Toolkit (LTT) is a better choice.

LTT is distributed as free software under GPL. Applying an
LTT-patch to the corresponding kernel will create a module to trace
48 events. The trace toolkit provides
a daemon, which will capture the
events and write it to disk. The
provided trace visualizer is used to
analyze the tracing data in three
different forms (viz., event graph,
process analysis, and raw event
descriptions).

LTT is useful for systems admin-
istrators for analyzing the perfor-
mance of the system. It is useful for
programmers for getting details of
the interaction between kernel and
user-level applications and for
embedded/real-time programmers
for getting information about real-
and non-real-time tasks’ behavior.
The theoretical aspect of LTT is
skipped in this article because it is
well documented in the Linux Trace Toolkit Reference Manual.

Enabling LTT with 2.4 kernel is very straightforward in the
sense that an available trace toolkit contains all the necessary
patches with documentation. It can be found at:

http://www.opersys.com/ltt/downloads.html

However, enabling LTT with the 2.6 kernel requires some guidance
to make the task successful and to save time. In this article, we’ll
guide you through the necessary packages, patches, and implemen-
tation details for 2.6 kernel. We will also demonstrate the usage of
the LTT with a simple example.

Linux Trace Toolkit with 2.6 Kernel
The procedure for building the Linux kernel has been changed in

2.6. To enable LTT and relayfs, you must first apply the correspond-
ing patches with the source code. These patches will modify the
source code in the respective places. The make xconfig command
will show the menu with a new look in 2.6. As shown in Figures 1
and 2, the tracing support and relayfs are enabled.

Relayfs is a file system, which is used to move data from kernel
to user space in an efficient manner. After configuring the kernel,
usually in 2.4, we would execute make dep, make bzImage, and
make modules command. Now, all these will work together if you
execute make.

To install kernel modules, the existing installation command will
not work in 2.6 kernel. For this, you must download modutilities
and install it. Then, execute the make modules_install command,
which will install all the kernel modules, and the make install

command, which will update the
boot loader. Now you can boot the
system with the LTT-enabled 2.6
kernel.

After installing the trace toolkit,
we need to mount the relayfs then
execute a daemon for a specific
interval of time. This tracer daemon
will capture all the events for the
given time period and store them in
the specified file name. The cap-
tured data can be analyzed by a
trace visualizer.

Necessary Packages
The following packages should

downloaded from their respective
Web sites:

Kernel —
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/ \
linux-2.6.3.tar.bz2

Trace Toolkit — http://www.opersys.com/ftp/pub/LTT/ \
TraceToolkit-0.9.6pre2.tgz

Mod-Utils — http://www.kernel.org/pub/linux/kernel/ \
people/rusty/modules/module-init-tools-3.0-pre9.tar.gz

Patches for relay file systems — http://www.opersys.com/ftp/ \
pub/relayfs/patch-relayfs-2.6.0-test11-031203.bz2

Linux trace toolkit patch for 2.6 kernel —
http://www.opersys.com/ftp/pub/relayfs/LTT/ \
patch-ltt-linux-2.6.0-test11-vanilla.bz2

The above two patches are for kernel building with LTT and relayfs
enabled. To use relayfs on LTT, download the patch from:

http://www.opersys.com/ftp/pub/relayfs/LTT/ \
patch-ltt-on-relayfs-0.9.6pre2-031203.bz2

Process Tracing with the Linux Trace Toolkit
B. B. Ramya, V. Pavithra, and B. Thangaraju

PERFORMANCE

Implementation
Download the 2.6.3 kernel source from the abovementioned

Web site along with the patches and untar the kernel in /usr/src
directory:

bzip2 -d /usr/src/linux-2.6.3.tar.bz2
tar xvf linux 2.6.3.tar

This will create a linux-2.6.3 directory under /usr/src. Then, copy
patch-relayfs-2.6.0-test11-031203.bz2 and patch-ltt-linux-2.6.0-
test11-vanilla.bz2 into the linux-2.6.3 directory.

Unzip them using:

bzip2 -d patch-relayfs-2.6.0-test11-031203.bz2
bzip2 -d patch-ltt-linux-2.6.0-test11-vanilla.bz2

then apply the above patches to the Linux kernel:

patch -p1 < patch-relayfs-2.6.0-test11-031203
patch -p1 < patch- ltt-linux-2.6.0-test11-vanilla

These patches will modify the kernel files. Next, we need to config-
ure and rebuild the kernel.

Enable the tracing option and relay file system in the configura-
tion menu as in Figures 1 and 2. Then a make will build the kernel
and create the modules.

The modules of the 2.6.3 kernel will not be loaded because they
come with version 2.4 of module-init tools. So, we must get the
latest version of the mod-utils and configure it for the kernel using:

./configure --prefix=/
make moveold
make
make install

to translate the old /etc/modules.conf into /etc/modprobe.conf with the
./generate-modprobe.conf script that comes with module-init-tools:

./generate-modprobe.conf /etc/modprobe.conf

Run make modules_install to install the kernel modules. Next,
make install will update the boot loader and reboot the system
with the new kernel.

Next, traverse to the /usr/src/linux-2.6.3 directory and untar the
TraceToolkit-0.9.6pre2.tgz:

tar xzvf TraceToolkit-0.9.6pre2.tgz

This will create a TraceToolkit-0.9.6pre2 directory and change into
that directory. Apply the patch:

bzip2 -d patch-ltt-on-relayfs-0.9.6pre2-031203.bz2
patch -p1 < patch-ltt-on-relayfs-0.9.6pre2-031203

Next, configure the tracetool using:

./configure
make
make install

Mount the relay file system:

mkdir /mnt/relay
mount -t relayfs relayfs /mnt/relay

Note that you can also make an entry in the /etc/fstab file for relayfs so
that you need not mount the relayfs every time you restart the system:

relayfs /mnt/relay relayfs defauls 1 1

Now, the tracetool is up and ready to trace the system.

Working with LTT
We are interested in capturing the system events along with the

following program’s execution trace. The program calls the fork
system call, which will create a new process:

int main (void)
{
fork ();
printf (“Hello Fork%d\n”, getpid());
return 0;
}

To get a trace of the system during the execution of this program,
we start the trace daemon for 5 sec as shown below:

tracedaemon -ts5 ./out1.trace ./out.proc

42 — Sys Admin www.sysadminmag.com November 2004

Figure 1 Enabling tracing support in kernel configuration

Figure 2 Enabling relayfs in kernel configuration

Conclusion
The Linux Trace Ttoolkit is a constructive tool to help all kinds

of Linux users see and understand system events. In this article, we
described how to enable LTT with 2.6.3 kernel, trace simple process
events, and analyze trace data in different forms.

Acknowledgement
The authors are very grateful to Mr. Karim Yaghmour, creator of

the Linux Trace Toolkit, embedded and real-time Linux expert.

References
Linux Trace Toolkit Reference Manual available at —

http://www.opersys.com/ltt/dox/ltt-online-help/index.html
Trace Toolkit -0.9.5a.tgz available at —

http://www.opersys.com/ltt/downloads.html

B. B. Ramya and V. Pavithra work as Project Trainees, and B.Thangaraju is
a Manager in the Embedded and Product Engineering Solutions (E&FPE),
Wipro Technologies in Bangalore, India. B. Thangaraju can be reached at

bt_raju@vsnl.net.

tracedaemon is the command to run the daemon for a given time
period, where t is for time, s for time unit in seconds, and 5 for the
given time period. Out1.trace and out.proc files are used to store the
trace data for analysis.

To get process details in a graphical format, execute the follow-
ing in the shell prompt:

tracevisualizer -g out1.trace out.proc outfile

The tracevisualizer command will launch the trace toolkit, and
the -g option is for graphical format. The next two fields are the
input files, which we specified to store the data collected by the dae-
mon process earlier. The last argument, outfile, is where the trace
and analysis are written in text format.

The event graph of the trace is shown in Figure 3. It gives infor-
mation about the processes that were executing during the trace,
along with their process ids. The right side of the figure shows the
entire trace of the process. It shows the details of what system calls,
signals, traps, hard and soft IRQs were handled for the specific
process that is highlighted in the left box, along with its interactions
with the kernel and any other processes that are executing.

The highlighted bar shows the trace of myfork that is executable
of fork_demo.c. When the CPU executes a system call like fork, the
CPU will change mode from user to kernel. The system call will be
executed in kernel mode, and the fork system call will spawn a new
child (unnamed child with pid 274 in Figure 3).

Processes of interest or system information can be analyzed by
the process analysis method as shown in Figure 4. This provides
information about the number of system calls the process has called
during its execution and the total time the kernel has taken to exe-
cute each system call. It also lists the process characteristics such as
the number of system calls, traps the process has made, the time
spent by the process waiting for I/O, and the quantity of data read
and written to files.

The “Raw Trace” view is there to list all events that were logged by
the data acquisition module, which is shown in Figure 5. The high-
lighted bar shows a Scheduler change for process id 271 (i.e., myfork).

November 2004 www.sysadminmag.com Sys Admin — 43

Figure 3 Event graph

Figure 4 Per-process analysis

Figure 5 Raw trace

