
1

Embedded Android

2

These slides are made available to you under a Creative Commons
Share-Alike 3.0 license. The full terms of this license are here:
https://creativecommons.org/licenses/by-sa/3.0/

Attribution requirements and misc., PLEASE READ:
● This slide must remain as-is in this specific location (slide #2),

everything else you are free to change; including the logo :-)
● Use of figures in other documents must feature the below

“Originals at” URL immediately under that figure and the below
copyright notice where appropriate.

● You are free to fill in the “Delivered and/or customized by” space
on the right as you see fit.

● You are FORBIDEN from using the default “About” slide as-is or
any of its contents.

(C) Copyright 2010-2019, Opersys inc.

These slides created by: Karim Yaghmour

Originals at: www.opersys.com/training/embedded-android

 Delivered and/or customized by

3

About

● Author of:

● Introduced Linux Trace Toolkit in 1999
● Originated Adeos and relayfs (kernel/relay.c)
● Training, Custom Dev, Consulting, ...

4

About Android

● Huge
● Fast moving
● Stealthy
● Increasingly complex

5

About Android

● Huge
● Fast moving
● Stealthy
● Increasingly very complex

Mainly:
● Internals-specifics are subject to change

Therefore:
● Must learn to relearn every new release

6

Goals

● Master the intricacies of all components making
up Android, including kernel Androidisms

● Get hands-on experience in building and
customizing Android-based embedded systems

● Learn basics of Android app development
● Familiarize with the Android ecosystem

7

Format

● Tracks:
● Lecture
● Exercises

● Fast pace
● Lots of material

8

Requirements

● Embedded systems development
● C, C++
● Basic Unix/Linux command line interface

experience
● Java (working knowledge of) and/or fast learner ;)

9

Knowledge Fields

● Main fields:
● Embedded systems
● Linux kernel internals
● Device driver development
● Unix system administration
● GNU software development
● Java-based development
● Android app development

● Vastly different fields, few (if any) master all
● Fluency required to tackle tough problems

10

Topics

● Setting context:
● Introduction to embedded Android
● Concepts and internals
● Android Open Source Project (AOSP)
● Kernel basics

● Android Essentials:
● Embedded Linux root FS
● Native Android user-space
● System Server
● Hardware Abstraction Layer
● Android Framework
● Quick Java Introduction

11

● Advanced/Specialized:
● Kernel internals
● Device driver development overview
● Graphics stack
● Security
● Memory management
● Treble
● Android Things
● Debugging and Performance Analysis

12

Courseware

● These slides
● Exercises
● Android documentation:

● source.android.com
● developer.android.com
● tools.android.com

● Android Open Source Project:
'Use the Source, Luke, use the Source. Be one with the
code.' -- Linus Torvalds

13

Hands-On Environment

● Host:
● Ubuntu 64-bit 16.04
● For 8.1/Oreo: 150GB / AOSP (source ~ 35GB, build ~ 85GB, git ~30GB)

● Hikey LeMaker 96boards:
● Kirin 620 SoC
● ARM® Cortex™-A53 Octa-core 64-bit up to 1.2GHz (ARM v8 instruction set)
● 2GB LPDDR3 SDRAM @ 800MHz
● 8GB eMMC on board storage
● 96boards form-factor w/ expansion connectors

● Emulator
● Other targets previously used:

● Nexux 7 2013 (“flo”) -- Qualcomm
● Minnowboard Max -- x86_64
● Inforce IFC6410 -- Qualcomm
● Panda Board – TI Omap
● BeagleBone – TI Sitara

14

Introduction to Embedded Android

● Basics
● History
● Ecosystem
● Legal framework
● Platform and hardware requirements
● Development tools

15

1. Basics

● Features
● UX Concepts
● App Concepts

16

1.1. Features (old snapshot)

● Application framework enabling reuse and replacement of components
● Dalvik virtual machine optimized for mobile devices
● Integrated browser based on the open source WebKit engine
● Optimized graphics powered by a custom 2D graphics library; 3D graphics

based on the OpenGL ES 1.0 specification (hardware acceleration optional)
● SQLite for structured data storage
● Media support for common audio, video, and still image formats (MPEG4,

H.264, MP3, AAC, AMR, JPG, PNG, GIF)
● GSM Telephony (hardware dependent)
● Bluetooth, EDGE, 3G, and WiFi (hardware dependent)
● Camera, GPS, compass, and accelerometer (hardware dependent)
● Rich development environment including a device emulator, tools for

debugging, memory and performance profiling, and the Android Studio IDE

17

1.2. UX Concepts

● Browser-like
● Swipe – Pinch – Zoom
● No user-concept of “task”
● Main keys:

● HOME
● BACK
● OVERVIEW (recent apps)

● App-model allows users to safely install/test
almost anything

18

Activity #1“Click”

“Click”

Activity #1

Activity #2

“Click”

Activity #1

Activity #2

Activity #3

“Back”

“Back”

OverviewHome
Back

Activity

“Home”

19

1.3. App Concepts

● No single entry point (No main() !?!?)
● Unlike Windows or Unix API/semantics in many

ways
● Processes and apps will be killed at random:

developer must code accordingly
● UI disintermediated from app “brains”
● Apps are isolated, very
● Behavior predicated on low-memory conditions

20

2. History
● 2002:

● Sergey Brin and Larry Page started using Sidekick smartphone
● Sidekick one of 1st smartphones integrating web, IM, mail, etc.
● Sidekick was made by Danger inc., co-founded by Andy Rubin (CEO)
● Brin/Page met Rubin at Stanford talk he gave on Sidekick’s development
● Google was default search engine on Sidekick

● 2004:
● Despite cult following, Sidekick wasn’t making $
● Danger inc. board decided to replace Rubin
● Rubin left. Got seed $. Started Android inc. Started looking for VCs.
● Goal: Open mobile hand-set platform

● 2005 - July:
● Got bought by Google for undisclosed sum :)

● 2007 - November:
● Open Handset Alliance announced along with Android

21

● 2008 - Sept.: Android 1.0 is released
● 2009 - Feb.: Android 1.1
● 2009 - Apr.: Android 1.5 / Cupcake
● 2009 - Sept.: Android 1.6 / Donut
● 2009 - Oct.: Android 2.0/2.1 / Eclair
● 2010 - May: Android 2.2 / Froyo
● 2010 - Dec.: Android 2.3 / Gingerbread
● 2011 - Jan : Android 3.0 / Honeycomb – Tablet-optimized
● 2011 – May: Android 3.1 – USB host support
● 2011 – Nov: Android 4.0 / Ice-Cream Sandwich – merge Gingerbread and Honeycomb
● 2012 – Jun: Android 4.1 / Jelly Bean – Platform Optimization
● 2012 – Nov: Android 4.2 / Jelly Bean - Multi-user support
● 2013 -- July: Android 4.3 / Jelly Bean -- BLE / GLES 3.0
● 2013 -- Oct: Android 4.4 / KitKat -- Low RAM optimizations
● 2014 -- Nov: Android 5.0 / Lollipop - ART and other pixie dust
● 2015 -- Mar: Android 5.1 / Lollipop - Multi-SIM card
● 2015 -- Oct: Android 6.0 / Marshmallow -- New permission model
● 2016 – Aug: Android 7.0 / Nougat – Multi-window
● 2016 – Oct: Android 7.1 / Nougat – A/B updates
● 2017 – Aug: Android 8.0 / Oreo – Treble / PIP
● 2017 – Dec: Android 8.1 / Oreo – Low-end device optimizations
● 2018 – Aug: Android 9.0 / Pie – AI, multi-camera API, indoor wifi positioning

22

3. “Flavors”

● Phone
● Tablet
● Wear (watches)
● TV
● Car:

● “Auto”
● “Automotive”

● Things (IoT)

23

3.1. Specifics

● Sources for new “flavors” not typically available at launch:
● Closed launches
● Gradual release once APIs/functionality stable

● Similarities:
● Generally same codebase (Brillo was a bit different, but it wasn't called

“Android”).
● Same architecture
● Same internal mechanisms
● Same build system
● Same C library
● Etc.

24

● Differences:
● Specific HALs
● Specific System Services
● Specific “system apps” -- tailored launcher, etc.
● Tailored/trimmed build
● Special attention to certain parts of the stack –

benefits other form-factors as well.

25

4. Ecosystem
● >2B monthly active devices worldwide
● 2.7M apps (vs. 2.2M for Apple's app store)
● 88% global smartphone marketshare (iOS is 12%)

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Dec
 2

00
9

Feb
 2

01
0

Apr
 2

01
0

Ju
n

20
10

Aug
 2

01
0

Oct
20

10

Dec
 2

01
0

Feb
 2

01
1

Apr
 2

01
1

Ju
n

20
11

Aug
 2

01
1

Oct
20

11

Dec
 2

01
1

Feb
 2

01
2

Apr
 2

01
2

Ju
n

20
12

Aug
 2

01
2

Oct
20

12

Dec
 2

01
2

Feb
 2

01
3

Apr
 2

01
3

Ju
n

20
13

Aug
 2

01
3

Dec
 2

01
3

Feb
 2

01
4

Apr
 2

01
4

Oct
20

13

Ju
n

20
14

Aug
 2

01
4

Dec
 2

01
4

Feb
 2

01
5

Oct
20

14
*

*
n

o
 d

a
ta

Apr
 2

01
5

Ju
n

20
15

Aug
 2

01
5

*
n

o
 d

a
ta

Ju
l 2

01
5*

Oct
20

15

Dec
 2

01
5

Feb
 2

01
6

Apr
 2

01
6

Ju
n

20
16

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Aug
 2

01
6

Oct
20

16
*

Dec
 2

01
6

*
n

o
 d

a
ta

Feb
 2

01
7

Apr
 2

01
7

Ju
n

20
17

Aug
 2

01
7

Oct
20

17

Dec
 2

01
7

Feb
 2

01
8

Android version
1.1

1.5

1.6

2.0

2.0.1

2.1

2.2

2.3-2.3.2

2.3.3-2.3.7

3.0

3.1

3.2

4.0-4.0.2

4.0.3-4.0.4

4.1

4.2

4.3

4.4

Cupcake

Donut

Eclair

Froyo

Gingerbread

Honeycomb

Ice Cream
Sandwich

Jelly Bean

KitKat

Gingerbread

Eclair

Eclair

Honeycomb

Honeycomb

Jelly Bean

Jelly Bean

5.0 Lollipop

Ice Cream
Sandwich

5.1 Lollipop

6.0 Marshmallow

7.0-7.1 Nougat

8.0-8.1 Oreo

26

4.1. Who's playing?

EV
ER
YB
OD
Y

27

4.2. Open Handset Alliance

● “... a group of 80 technology and mobile companies who have come together
to accelerate innovation in mobile and offer consumers a richer, less
expensive, and better mobile experience. Together we have developed
Android™, the first complete, open, and free mobile platform.”

● Unclear what OHA does or what benefits, if any, members derive
● Not an organization with board members, staff, etc. ... just an “Alliance”
● Google's Android team are the lead on all bleeding edge dev, all else tag along
● OHA is largely inactive / absent
● Comprised of:

● Mobile Operators: Sprint, T-Mobile, Vodafone, NTT Docomo, ...
● Handset Manufacturers: HTC, Motorola, LG, Samsung, Sony Ericsson, ...
● Semiconductor Companies: ARM, Freescale, Intel, NVIDIA, Qualcomm, TI, ...
● Software Companies: Google, ...
● Commercialization Companies: ...

28

5. Legal Framework

● Code access
● Code licenses
● Branding use
● Google's own Android Apps
● Alternative App stores
● Oracle v. Google

29

5.1. Code Access

● Parts:
● Kernel
● Android Open Source Project (AOSP)

● Kernel:
● Should have access to latest shipped version => GPL requirement
● Google-maintained forks at android.googlesource.com

● AOSP:
● Usually Code-drops every year
● Official AOSP branches at android.googlesource.com
● Managed by “repo” tool, an overlay to “git”

30

5.2. Code Licenses

● Kernel:
● GNU General Public License (a.k.a. GPL)

● AOSP:
● Mostly Apache License 2.0 (a.k.a. ASL)
● Having GPL-free user-space was a design goal
● Even BlueZ (GPL) is now gone -- starting 4.2
● Some key components in BSD: Bionic and Toybox
● “external/” directory contains a mixed bag of licenses

● May be desirable to add GPL/LGPL components:
● BusyBox
● glibc

31

5.3. Branding Use

● Android Robot:
● Very much like the Linux penguin

● Android Logo (A-N-D-R-O-I-D w/ typeface):
● Cannot be used

● Android Custom Typeface:
● Cannot be used

● Android in Official Names:
● As descriptor only: “for Android”
● Most other uses require approval

● Android in Messaging:
● Allowed if followed by a generic: “Android Application”

● Compliance through CDD/CTS/VTS involved in “approval”

32

5.4. Google's own Android Apps

● The non-AOSP apps:
● Google Mobile Services (GMS)
● Play Store
● YouTube
● Maps
● Gmail
● Photos
● ...

● Require:
● CDD/CTS/VTS Compliance
● Signed agreement w/ Google

● Inquiries: android-partnerships@google.com

33

5.5. Alternative “App Stores”

● Many app stores out there:
● Amazon App Store
● GetJar
● Slide Me
● Yandex
● AppBrain
● Samsung Galaxy Apps
● F-Droid
● ...

● Nothing precluding you from having your own

34

5.6. Oracle v. Google

● Filed August 2010
● Patent infringement:

● 6,125,447; 6,192,476; 5,966,702; 7,426,720; RE38,104; 6,910,205; and 6,061,520
● Copyright infringement:
● Android does not use any Oracle Java libraries or JVM in the final product.
● Android relies on Apache Harmony and Dalvik instead.
● In October 2010, IBM left Apache Harmony to join work on Oracle's

OpenJDK, leaving the project practically orphaned.
● ...
● In Spring of 2012 Oracle lost both on Copyright and Patent fronts
● ...
● Oracle appealed
● ...

35

6. Platform and Hardware requirements

● In principle:
● Android runs on top of Linux
● Therefore: if it runs Linux, it can run Android

● Known to have been made to work on:
● ARM
● x86
● MIPS
● SuperH

● Put in all sort of devices:
● Washers, micro-wave ovens, car systems, etc.

36

6.1. Compliance Definition Document

● Software: MUST conform to AOSP
● Application Packaging Compatibility: support “.apk” files
● Multimedia Compatibility: decoders, encoders, recording, ...
● Developer Tool Compatibility: adb, ddms, Monkey
● Hardware compatibility:

● Display and Graphics
● Input Devices
● Data Connectivity
● Cameras
● Memory and Storage
● USB

● Performance Compatibility
● Security Model Compatibility
● Software Compatibility Testing
● Updatable Software: MUST include mechanism to update

37

6.2. Compatibility Test Suite

38

7. Project Treble

● Introduced with 8.x
● Major rework of stack internals
● Goal: easier migration to new versions
● Motivation – as of early 2018:

● Vast majority of Apple devices run current release
● Vast majority of Android devices don't even run the previous

release yet.
● Tested by Vendor Test Suite (VTS)
● VTS now required for GMS certification

39

7.1. Releases before Treble

40

7.2. Updates before Treble

41

7.3. Treble's goal for updates

42

7.4. New Treble layers

43

7.5. Update with Treble

44

8. Development tools

● Requirements
● App dev tools and resources
● App debugging

45

8.1. Requirements

● App development and debugging:
● Windows / Mac / Linux workstation
● JDK
● Android Studio
● Highly recommended: real device(S)

● Platform development:
● GNU cross-dev toolchain
● JTAG debugger
● ... more on this later

46

8.2. App dev tools and resources

● SDK:
● android – manage AVDs and SDK components
● apkbuilder – creating .apk packages
● dx – converting .jar to .dex
● adb – debug bridge
● ...

● Emulator – QEMU-based ARM emulator
● Use KVM for x86 instead

● NDK: GNU toolchain for native binaries
● Documentation: developer.android.com

47

48

49

8.3. App debugging

● adb
● monitor
● monkeyrunner
● traceview
● logcat
● Android Studio

50

1. Linux Concepts

2. Android Concepts

3. Overall Architecture

4. System startup

5. Linux Kernel

6. Hardware Support

7. Native User-Space

8. Android's Java

9. JNI

10.System Server

11.Calling on Services

12.Activity Manager

13.Binder

14.HAL

15.Inside Treble

16.Stock AOSP Apps

Concepts and Internals

51

1. Linux Concepts

● Processes (fork() and his friends)
● Signals (kill() ... or be killed)
● Sockets / Pipes / Fifos / SysV IPC
● Hardware devices as files (/dev)
● Daemons
● Shell / scripts
● Users (root vs. everyone else -- # vs. $)
● ELF files
● GNU toolchain
● ... 40 years of Unix

52

2. Android Concepts

● Components
● Intents
● Manifest file
● Component lifecycle
● Processes and threads
● Remote procedure calls
● Permissions
● Storage
● Native development

53

2.1. Components

● 1 App = N Components
● Apps can use components of other applications
● App processes are automagically started whenever any

part is needed
● Ergo: N entry points, !1, and !main()
● Components:

● Activities
● Services
● Broadcast Receivers
● Content Providers

54

2.2. Intents

● Intent = asynchronous message w/ or w/o
designated target

● Like a polymorphic Unix signal, but w/o required
target

● Intents “payload” held in Intent Object
● Intent Filters specified in Manifest file

55

2.3. Manifest file

● Informs system about app’s components
● XML format
● Always called AndroidManifest.xml
● Activity = <activity> ... static
● Service = <service> ... static
● Broadcast Receiver:

● Static = <receiver>
● Dynamic = Context.registerReceiver()

● Content Provider = <provider> ... static

56

2.4. Component lifecycle

● System automagically starts/stops/kills
processes:
● Entire system behaviour predicated on low memory

● System triggers Lifecycle callbacks when
relevant

● Ergo: Must manage Component Lifecycle
● Some Components are more complex to

manage than others

57

58

2.5. Processes and threads

● Processes
● Default: all callbacks to any app Component are issued to the main process thread
● <activity>—<service>—<recipient>—<provider> have process attribute to override

default
● Do NOT perform blocking/long operations in main process thread:

– Spawn threads instead
● Process termination/restart is at system’s discretion
● Therefore:

– Must manage Component Lifecycle

● Threads:
● Create using the regular Java Thread Object
● Android API provides thread helper classes:

– Looper: for running a message loop with a thread
– Handler: for processing messages
– HandlerThread: for setting up a thread with a message loop

59

2.6. Remote procedure calls

● Android RPCs = Binder mechanism
● No Sys V IPC due to in-kernel resource leakage
● Binder is a low-level functionality, not used as-is
● Instead: must define interface using Interface

Definition Language (IDL)
● IDL fed to aidl Tool to generate Java interface

definitions

60

2.7. Security/Permissions

● Most security enforced at process level: UID, GID
● Permissions enforce restrictions on:

● Per-process operations
● Per-URI access

● Applications are sandboxed
● Specific permissions required to “exit” sandbox
● Decision to grant access based on:

● Certificates
● User prompts

● All permissions must be declared statically

61

2.8. Data storage

● Shared preferences
● Private primitive key-pair values

● Internal storage
● Private data on device memory

● External storage
● Public data on shared external device (SD) -- emulated

● SQLite DB
● Private DB

● Network connection
● Web-based storage (REST)

62

2.9. Native development

● Useful for:
● Porting existing body of code to Android
● Developing optimized native apps, especially for gaming

● Provides:
● Tools and build files to generate native code libraries from C/C++
● Way to embed native libs into .apk
● Set of stable (forward-compatible) native libs
● Documentation, samples and tutorials

● Enables:
● Calling native code from Java using JNI
● Implementing fully native apps (since 2.3)

● Doesn't allow you to:
● Compile traditional Linux/Unix apps as-is

63

3. Architecture

● Embedded Linux
● Modern phone/tablet
● System-on-Chip (SoC)
● Android

64

65

66

67

68

4. System Startup

● Bootloader
● Kernel
● Init
● Zygote
● System Server
● Activity Manager
● Launcher (Home)

69

70

4.1. Bootloader

● “Reference” bootloader:
● https://github.com/travisg/lk
● https://www.codeaurora.org/blogs/little-kernel-based-

android-bootloader
● aosp/bootable/bootloader

● Empty these days ...
● aosp/bootable/recovery

● UI-based recovery boot program
● Accessed through magic key sequence at boot
● Usually manufacturer specific variant

71

● Storage layout:
● Bootloader
● “boot” image -- Kernel + RAM disk
● “system” partition -- /system
● “data” partition -- /data
● “cache” partition -- /cache
● “vendor” partition -- /vendor
● “recovery” partition -- Alternate boot image

72

4.2. Kernel

● Early startup code is very hardware dependent
● Initializes environment for the running of C code
● Jumps to the architecture-independent

start_kernel() function.
● Initializes high-level kernel subsystems
● Mounts root filesystem
● Starts the init process

73

4.3. Android Init

● Open, parses, and runs /init.rc:
● Create mountpoints and mount filesystems
● Set up filesystem permissions
● Set OOM adjustments properties
● Start daemons:

– adbd
– servicemanager (binder context manager)
– vold
– netd
– rild
– app_process -Xzygote (Zygote)
– mediaserver
– ...

74

4.4. Zygote, etc.

● Init:
● app_process -Xzygote (Zygote)

● frameworks/base/cmds/app_process/app_main.cpp:
● runtime.start(“com.android.internal.os.Zygote”, ...

● frameworks/base/core/jni/AndroidRuntime.cpp:
● startVM()
● Call Zygote's main()

● frameworks/base/core/java/com/android/internal/os/
ZygoteInit.java:
● ...

75

● preloadClasses()
● startSystemServer()
● ... magic ...
● Call SystemServer's run()

● frameworks/base/services/java/com/android/
server/SystemServer.java:
● Start all system services/managers
● Start ActivityManager:

– Send Intent.CATEGORY_HOME
– Launcher2 kicks in

76

5. Linux Kernel

77

6. Hardware Support

● Activity Recognition
● Audio
● Bluetooth
● Camera
● ConsumerIr
● Framebuffer
● Fingerprint
● Fused Location

● GPS
● Gralloc
● HWcomposer
● Keymaster
● Lights
● NFS
● Power
● Sensors

● Not accessed directly
● Use of HALs
● One HAL for each hardware type
● Before Oreo: HAL “modules” are .so files
● Treble: HALs are published APIs and can be binderized

78

7. Native User-Space

● Mainly
● /data => User data
● /system => System components
● /cache => Cache (& OTA update)

● Also found:
● /dev
● /proc
● /sys
● /sbin
● /mnt
● Etc.

● Key directories gone ...

79

8. Android's Java
● Oracle (Sun) Java =

Java language + JVM + JDK libs
● Android Java =

Java language + ART + OpenJDK libs

80

8.1. ART

● “Android RunTime”
● 64 bit
● Multi-core
● AOT first, JIT second
● Better debugging capabilities

(profiling/stack/crashes)
● Introduced as alternative to Dalvik
● Has now (largely) replaced Dalvik

81

9. JNI – Java Native Interface

● Call gate for other languages, such as C, C++
● If you know C#: Equivalent to .NET's pinvoke
● Usage: include and call native code from App
● Tools = NDK ... samples included
● Check out “JNI Programmer's Guide and

Specification” -- no longer “freely available”

82

10. System Services

● The Android OS
● >100 or so on a modern Nougat
● 5 or 6 new at every major release
● Use “service list” to see current list

83

84

11. Calling on System Services

● Use getSystemService
● Ex: NotificationManager Object reference:

String ns = Context.NOTIFICATION_SERVICE;

NotificationManager mNotificationManager = (NotificationManager) \
getSystemService(ns);

● Prepare your content
● Call on the object:

mNotificationManager.notify(HELLO_ID, notification);

85

12. ActivityManager

● Start new Activities, Services
● Fetch Content Providers
● Intent broadcasting
● OOM adj. maintenance
● Application Not Responding
● Permissions
● Task management
● Lifecycle management

86

● Ex. starting new app from Launcher:
● onClick(Launcher)
● startActivity(Activity.java)
● <Binder>
● ActivityManagerService
● startViaZygote(Process.java)
● <Socket>
● Zygote

87

13. Binder

● CORBA/COM-like IPC
● Data sent through “parcels” in “transactions”
● Kernel-supported mechanism
● /dev/binder
● Check /sys/kernel/debug/binder/*
● android.* API connected to System Server

through binder.

88

89

14. Hardware Abstraction Layer

/frameworks/base/services/java/...

/frameworks/base/services/jni/

/hardware/libhardware/

/device/[MANUF.]/[DEVICE]
/sdk/emulator/

Kernel or module

/frameworks/base/core/...

AOSP-provided
ASL

Manuf.-provided
Manuf. license

Manuf.-provided
GPL-license

90

15. Inside Treble

● Linux kernel standardization on LTS releases
● Hardware Interface Definition Language (HIDL)
● Vendor NDK (VNDK)
● Vendor Interface Object (VINTF)
● Vendor Test Suite (VTS)

91

15.1. Treble's impact

● Some modifications now off-limits:
● System service internals
● HAL definition reworking/extension
● Core library replacement by tweaking dependent components'

APIs.
● Tweaking existing SE policies
● Any change that impacts OTA
● Any change that breaks VTS

● Need to make sure partners/vendors are creating Treble-
compliant BSPs, additions, codebase, etc.

92

16. Stock AOSP Apps

/packages/apps /packages/providers

Launcher2

Music
Browser
Calculator
Calendar Provision
Camera

Settings
Contacts

Email
Gallery

/packages/inputmethods

AccountsAndSettings ApplicationProvider LatinIME
AlarmClock Mms CalendarProvider OpenWnn
Bluetooth ContactsProvider PinyinIME

PackageInstaller DownloadProvider
Protips DrmProvider

GoogleContactsProvider
QuickSearchBox MediaProvider

CertInstaller TelephonyProvider
SoundRecorder UserDictionaryProvider

DeskClock SpeechRecorder
Stk
VoiceDialer

HTMLViewer

93

Working with the
Android Open Source Project

● Tools and location
● Content
● Building
● Build tricks
● Build system architecture
● Output images
● Using adb
● Custom toolchains and dev kits
● Compatibility Test Suite
● Basic hacks

94

1. Tools and location

● Location:
● http://android.googlesource.com/

● Get “repo”:
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

$ chmod a+x ~/bin/repo

● Fetch the AOSP:
● Make sure you fetch a tagged release
● Pie:

$ repo init -u https://android.googlesource.com/platform/manifest -
b android-9.0.0_r36

$ repo sync

95

2. Content

art
bionic C library replacement

build Build system
Compatibility Test Suite

development Development tools
device Device-specific files and components
external Copy of external projects used by AOSP
frameworks
hardware

Apache Harmony
The NDK

packages Stock Android apps, providers, etc.

The SDK
system

Android Runtime

bootable Reference bootloader

cts
dalvik Dalvik VM

System services, android.*, Android-related cmds, etc.
Hardware support libs

libcore
ndk

prebuilt Prebuilt binaries
sdk

pieces of the world that are the core of the embedded linux platform at
the heart of Android.

96

97

3. Building

● Requires Ubuntu -- works with 18.04, 16.04,
14.04, and 12.04

● See
https://source.android.com/source/initializing.html

● Required packages
● Possible fixes
● Building on Mac

98

● Set up build environment:

$.⌴build/envsetup.sh

$ lunch

● Launch build and go watch tonight's hockey game:
$ make -j8

● ... though you should check your screen at breaks ...
● Flash:

$ adb reboot bootloader

$ fastboot oem unlock

$ fasboot flashall

● Need to reuse envsetup.sh and lunch on every new shell

99

4. Build Tricks

● Commands (from build/envsetup.sh):
● godir
● croot
● mm
● m

● Most important:
● hmm
● make help

● Speeding up the Build:
● CPU
● RAM
● SSD
● CCACHE

– $ export USE_CCACHE=1
● Seed out with pre-built binaries from your local repo

100

5. Build System Architecture
● Non-Recursive
● “Modules” build predicated on Android.mk

101

6. Output Images

● All output and build in [aosp]/out/
● Images at [aosp]/out/target/product/hikey/:

● boot.img
● cache.img
● ramdisk.img
● system.img
● userdata.img

● Kernel is in:
● device/linaro/hikey-kernel

● Emulator overrides -- if you use qemu:
● -kernel
● -initrd

102

7. Using adb

● Can use to control/interface w/ running AOSP,
including emulator.

● Shell:
$ adb shell

#

● Dumping the log:
$ adb logcat

● Copying files to/from target:
$ adb push foo /data/local

$ adb pull /proc/config.gz

Host

Target

103

8. Custom Toolchains and Dev Kits

● Rationale
● SDK generation
● NDK generation

104

8.1. Rationale

● SDK:
● Providing other internal teams or external developers

access to your modified/custom Android APIs.
● NDK:

● Same as SDK rationale
● Custom cross-dev toolchain:

● To avoid having to use a binary toolchain from 3rd party.
● To control the build parameters used to create the

toolchain. Ex.: use uClibc instead of glibc.

105

8.2. SDK generation

● Building the SDK:
$. build/envsetup.sh

$ lunch sdk-eng

$ make sdk

● If API modified, do this before make:
$ make update-api

● Location: [aosp]/out/host/linux-x86/sdk/
● Using a custom SDK:

● Modify Android Studio config

106

8.3. NDK generation

● Build
$ cd ndk/build/tools

$ export ANDROID_NDK_ROOT=[aosp]/ndk

$./make-release --help

$./make-release

IMPORTANT WARNING !!

This script is used to generate an NDK release package from scratch
for the following host platforms: linux-x86

This process is EXTREMELY LONG and may take SEVERAL HOURS on a dual-core
machine. If you plan to do that often, please read docs/DEVELOPMENT.TXT
that provides instructions on how to do that more easily.

Are you sure you want to do that [y/N]

107

9. Compatibility Test Suite

● Android Compatibility Program:
● Source code to Android stack
● Compatibility Definition Document (CDD) – Policy
● Compatibility Test Suite (CTS) – Mechanism

● Each Android version has own CDD & CTS
● CTS:

● Part of AOSP
● Run from host using USB over to attached device
● Based on JUnit
● Runs various test apps on target
● Relies on ADB
● Provides report to be be analyzed and/or sent back to Google

108

109

● Report:
● .zip file containing XML files and screen-shots
● Sent to: cts@android.com

● Building the CTS:
$. build/envsetup.sh

$ make cts

● Launching the CTS:
$ cd out/host/linux-x86/bin/

$./cts

$ cts_host >

$ cts_host > help

...

110

● Using the CTS:
$ cts_host > ls --plan
List of plans (8 in total):
Signature
RefApp
VM
Performance
AppSecurity
Android
Java
CTS

$./cts start --plan CTS

111

● Areas covered:
● Signature tests
● Platform API tests
● Android Runtime tests
● Platform Data Model
● Platform Intents
● Platform Permissions
● Platform Resources

112

10. Basic Hacks

● Add device
● Add app
● Add app overlay
● Add native tool or daemon
● Add native library

113

10.1. Adding a new device

● Create directory in device/:
● device/acme/coyotepad/

● Makefile checklist:
● AndroidProducts.mk
● full_coyotepad.mk
● BoardConfig.mk
● Android.mk

● Menu integration:
● vendorsetup.sh

114

PRODUCT_MAKEFILES := \

$(LOCAL_DIR)/full_coyotepad.mk

10.1.1. AndroidProducts.mk

115

$(call inherit-product,
$(SRC_TARGET_DIR)/product/languages_full.mk)

If you're using 4.2/Jelly Bean, use full_base.mk instead of
full.mk

$(call inherit-product, $(SRC_TARGET_DIR)/product/full.mk)

DEVICE_PACKAGE_OVERLAYS :=

PRODUCT_PACKAGES +=

PRODUCT_COPY_FILES +=

PRODUCT_NAME := full_coyotepad

PRODUCT_DEVICE := coyotepad

PRODUCT_MODEL := Full Android on CoyotePad, meep-meep

10.1.2. full_coyotepad.mk

116

TARGET_NO_KERNEL := true

TARGET_NO_BOOTLOADER := true

TARGET_CPU_ABI := armeabi

BOARD_USES_GENERIC_AUDIO := true

USE_CAMERA_STUB := true

10.1.3. BoardConfig.mk

117

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

ifneq ($(filter coyotepad,$(TARGET_DEVICE)),)

include $(call all-makefiles-under,$(LOCAL_PATH))

endif

10.1.4. Android.mk

118

add_lunch_combo full_coyotepad-eng

10.1.5. vendorsetup.sh

119

10.2. Adding new applications

● Can't use Android Studio -- Because of Gradle
● Local:

● Add app to device/acme/coyotepad/
● Add Android.mk to app
● Add to PRODUCT_PACKAGES in full_coyotepad.mk

● Global:
● Add application in [aosp]/packages/apps
● Add an appropriate Android.mk file to project
● Add project to PRODUCT_PACKAGES in

[aosp]/build/target/product/core.mk

120

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional

LOCAL_SRC_FILES := $(call all-java-files-under, src)

LOCAL_PACKAGE_NAME := HelloWorld

include $(BUILD_PACKAGE)

121

10.3. Adding an app overlay

● device/acme/coyotepad/overlay/
● full_coyotepad.mk:

● DEVICE_PACKAGE_OVERLAYS :=
device/acme/coyotepad/overlay

122

10.4. Adding a native tool or daemon

● Local:
device/acme/coyotepad/

● Global:
● system/core/
● system/
● frameworks/base/cmds/
● frameworks/native/cmds/
● external/

123

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := hello-world

LOCAL_MODULE_TAGS := optional

LOCAL_SRC_FILES := hello-world.cpp

LOCAL_SHARED_LIBRARIES := liblog

include $(BUILD_EXECUTABLE)

124

● Local:
device/acme/coyotepad/

● Global:
● system/core/
● frameworks/base/libs/
● frameworks/native/libs/
● external/

10.5. Add a native library

125

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := libmylib

LOCAL_MODULE_TAGS := optional

LOCAL_PRELINK_MODULE := false

LOCAL_SRC_FILES := $(call all-c-files-under,.)

include $(BUILD_SHARED_LIBRARY)

126

Kernel basics

1.Selecting a kernel

2.Configuring the kernel

3.Compiling the kernel

4.Installing the kernel

5.Useful boot parameters

6.Kernel patches

127

1. Selecting a kernel

● Google:
● http://android.googlesource.com

● Vanilla:
● http://www.kernel.org

● Either way ... you're screwed:
● Android kernel is a fork
● No resolution in sight
● Cannot use vanilla kernel as-is ... androidisms

● Recent kernels have most Androidisms
● Android team continues to add stuff in their fork
● Talk to your SoC vendor

128

2. Configuring the kernel

129

● Main options:
● Processor support
● General setup
● Enable loadable module support
● Enable the block layer
● Platform support
● Kernel options
● Bus options
● Advanced setup
● Networking support
● Device Drivers
● File systems
● Library routines
● Kernel hacking
● Security options
● Cryptographic API

130

● Kernel architecture name (ARCH=):
● x86 => x86
● ARM => arm
● ARM64 => arm64
● PPC => powerpc
● mips => mips
● sh => sh

● Some options are visible only to certain archs

131

● The fact that an option is displayed doesn't
mean it's supported.

● The fact that an option isn't displayed
doesn't mean it isn't supported.

● Configuration methods:
● make config
● make oldconfig
● make menuconfig
● make xconfig

● All config methods generate a .config file

132

● Configs will also generate headers & symlinks
● Set up temporary env. var. for cross-building:

$ export TARGET=[your_aosp]/prebuilt/linux-x86/toolchain/arm-
eabi-4.4.0/bin/arm-eabi

● To start configuration menu for your target:
$ make ARCH=arm CROSS_COMPILE=${TARGET}- menuconfig

● Some items can be configured as modules and
loaded dynamically at runtime.

● Once the configuration is done, quit the menu and
save your configuration. This will create a .config
file.

● Some targets have preset configurations:
$ make ARCH=arm64 CROSS_COMPILE=${TARGET}- \
> hikey_defconfig

133

● Can use the menus provided by menuconfig and
xconfig to load and save various configurations.

● Simplest way to manipulate configurations: copy
the .config files by hand.

● To reuse an old configuration, simply copy
the .config back to the kernel's tree and:
$ make ARCH=arm CROSS_COMPILE=${TARGET}- oldconfig

● Place all your .config files in your
${PRJROOT}/kernel directory for easy access.

● Rename your .config files using meaningful
names: 2.6.37.config, 2.6.37-frame-buf.config, ...

134

3. Compiling the kernel
1.Building the kernel:

● Example command – depends on target:
$ make ARCH=arm CROSS_COMPILE=${TARGET}- zImage
● Generates a kernel image compressed via gzip
● zImage may not be valid target. Other targets include:

vmlinux, bzImage, uImage, cuImage, …
● Use “make ARCH=... help” to find out valid targets
● ARCH variable indicates which architecture

subdirectory is to be used.
● CROSS_COMPILE is used to form the name of the

tools. For example, $(CROSS_COMPILE)gcc
becomes arm-linux-gcc. Hence the trailing “-”.

135

2.Building the modules:
$ make ARCH=arm CROSS_COMPILE=${TARGET}- modules

● IF YOU NEED TO restore kernel tree to
distribution state:
$ make ARCH=arm CROSS_COMPILE=${TARGET}- distclean

136

4. Installing the kernel1

● Managing multiple kernel images:
● Images in ${PRJROOT}/images must be properly

identified.
● For each kernel, there are 4 files to put in $

{PRJROOT}/images:
– The uncompressed image => vmlinux
– The compressed image => depends on arch
– The kernel symbols => System.map
– The kernel configuration file => .config

● Compressed image is usually in the
arch/YOUR_ARCH/boot directory.

1. This is for future reference. $PRJROOT is undefined at this point

137

● See the exercise set for target image we are using.
● Location of images can be seen by looking at

arch/YOUR_ARCH/Makefile
● Images placed in ${PRJROOT}/images must follow

same naming convention as .config file:
$ cp arch/arm/boot/zImage \

> ${PRJROOT}/images/zImage-2.6.37

$ cp System.map ${PRJROOT}/images/System.map-2.6.37

$ cp vmlinux ${PRJROOT}/images/vmlinux-2.6.37

$ cp .config ${PRJROOT}/images/2.6.37.config

138

● Installing the kernel modules:
● Must install modules in directory following the

previously adopted naming convention:
$ make ARCH=arm CROSS_COMPILE=${TARGET}- \
> INSTALL_MOD_PATH=${PRJROOT}/images/modules-2.6.37 \
> modules_install

● INSTALL_MOD_PATH is prepended to the default
/lib/modules. Hence, modules installed in:

${PRJROOT}/images/modules-2.6.37/lib/modules

139

Embedded Linux Root FS

1.Legacy Integration
2.Architecture
3.Tools
4.Embedded Linux Workspace
5.Basic root filesystem structure
6.Libraries
7.Kernel modules
8.Device files
9.Main system applications
10.Auto-generating filesystems
11.Creating a cross-development toolchain

140

1. Legacy Integration

● What if I ... ?:
● have been using my custom rootfs forever
● really need glibc
● have a huge stack based on “legacy Linux”
● don't want to deal with AOSP's build system
● want BusyBox
● want to unify with a std Linux desktop
● need things the AOSP doesn't provide
● have a ton of Linux drivers and want those to be used by Android
● ...

● Know this: filesystem integration is trivial:
● Change build system to copy your custom rootfs
● Change init scripts to start you own daemons
● Use sockets to communicate

● Know this too: std Linux desktop integration is NOT

141

2. Architecture

142

143

3. Tools

● GNU cross-development toolchain:
● gcc - compiler
● as - assembler
● ld - linker
● gdb/gdbserver - debugger
● etc.

● C library: uClibc, eglibc or glibc

144

4. Embedded Linux Workspace
● Need to organize the components used during

cross-platform development. Workspace layout:

bootldr: target bootloader (s)
build-tools: toolchain build packages and sources
debug: debugging tools
doc: project documentation
images: binary images ready to be used on target
kernel: sources and build directories for target kernels
project: your own custom code for the target
rootfs: root filesystem as seen on the target
sysapps: sources for target's system applications
tmp: temporary data and experiments
tools: toolchain and all other tools required to build

software for the target.

145

4.1. Workspace env. vars. script
● Complete workspace script (devex)
export PROJECT=emblinux
export PRJROOT=/home/karim/${PROJECT}
export TARGET=arm-unknown-linux-gnueabi
export PATH=${PATH}:[BBONE_WS_DIR]/bin
cd $PRJROOT

● To use this script:

$.⌴devex
● Possible values for $TARGET:

● ARM: arm-linux, arm-unknown-linux-gnueabi
● MIPS: mips-linux, mipsel-unknown-linux-gnu
● I386: i386-linux, i586-geode-linux-uclibc

146

5. Basic root filesystem structure
● Unix FS structured for multi-user systems
● Some directories not necessary for embedded
● Filesystem Hierarchy Standard (FHS):

● /bin => Essential user binaries
● /boot => Bootloader and kernel images
● /dev => Device files
● /etc => System configuration
● /home => User home directories
● /lib => Essential shared libs and kernel modules
● /mnt => Temporary mount point
● /opt => Add-on software packages
● /sbin => Essential system binaries
● /tmp => Temporary files
● /usr => Secondary hierarchy (mostly user apps)
● /var => Variable data generated by daemons

147

● Non-essential multi-user dirs:
● /home, /mnt, /opt, /root

● Depends on bootloader:
● /boot

● Traditionally “essential”:
● /bin, /dev, /etc, /lib, /proc, /sbin, /usr, /tmp, /var

● Careful with “/etc”, Android needs it to point to
“/system/etc” for Dbus config ... Just hack it.

● Contain their own hierarchy:
● /usr, /var

148

● What are all these binaries directories for?
● /bin => Essential binaries for user and admin
● /sbin => Essential binaries for admin
● /usr/bin => Non-essential user and admin binaries
● /usr/sbin=> Non-essential admin binaries

● What are all those libraries directories for?
● /lib => Essential system libraries
● /usr/lib => Non-essential libraries

● The kernel does not force FS layout. Layout is
“universally” agree upon (i.e. FHS.)

149

● To start working on rootfs:
$ cd ${PRJROOT}/rootfs

● Create core rootfs directories:
$ mkdir bin lib sbin usr var

● Create the /usr hierarchy:
$ mkdir usr/{bin,lib,sbin}

● Create the /var hierarchy:
$ mkdir var/{lib,lock,log,run,tmp}
$ chmod 1777 var/tmp

150

6. Libraries

1.glibc

2.uClibc

151

6.1. glibc
● glibc components:

● Actual shared libraries:
– Format: libLIB_NAME-GLIBC_VER.so
– Examples: libm-2.3.2.so, libc-2.3.2.so

● Major revision version symbolic links:
– Format: libLIB_NAME.so.MAJOR_REV_VER
– Examples: libdl.so.2, libc.so.6

● Version-independent symbolic links to the major
revision version symbolic links:
– Format: libLIB_NAME.so
– Examples: libdl.so, libm.so

● Static library archives:
– Format: libLIB_NAME.a
– Examples: libdl.a, libm.a

152

● For target, need:
● The actual shared libs
● The major revision version symbolic links

● Also need dynamic linker:
● Actual linker: ld-GLIBC_VER.so
● Symbolic link to linker:

– x86, ARM, SH, m68k => ld-linux.so.MAJOR_REV_VER
– MIPS, PPC => ld.so.MAJOR_REV_VER

● Must determine exact library components required.
● BELS table 6.2 contains complete list

153

● Most important components:
● ld => the dynamic linker
● libc => the C library
● libm => the math library
● libdl => the shared objects manipulation library

● Must determine exact dependencies of your
applications.

● Native ldd is not cross-platform-capable

● Can use readelf or uclibc-ldd:

154

● Using readelf:
$ arm-linux-readelf -a ${PRJROOT}/rootfs/bin/busybox \
> | grep "Shared library"
 0x00000001 (NEEDED) Shared library: [libc.so.0]

● Using uclibc-ldd:
$ arm-uclibc-ldd ${PRJROOT}/rootfs/bin/busybox
libc.so.0 => /home/karim/example-sys/tools/uclibc/lib/libc.so.0
/lib/ld-uClibc.so.0 => /lib/ld-uClibc.so.0

● Copying important libraries to target rootfs:
$ cd ${TARGET_PREFIX}/lib
$ for file in libc libcrypt libdl libm \
> libpthread libresolv libutil
> do
> cp $file-*.so ${PRJROOT}/rootfs/lib
> cp -d $file.so.[*0-9] ${PRJROOT}/rootfs/lib
> done
$ cp -d ld*.so* ${PRJROOT}/rootfs/lib

155

● Copying all libraries (replace “arm” if need be):
$ cp -d ${PRJROOT}/tools/arm-unknown-linux-gnueabi/arm-unknown-

linux-gnueabi/lib/* ${PRJROOT}/rootfs/lib

● Stripping all target libraries for space efficiency:
$ arm-unknown-linux-gnueabi-strip ${PRJROOT}/rootfs/lib/*.so*

156

6.2. uClibc
● Same naming conventions as glibc
● Implements most of the glibc components:

● ld, libc, libcrypt, libdl, libm, libpthread, libresolv, libutil.
● uClibc libraries can coexist with glibc libraries in

target's /lib directory.
● Copying important libraries to target rootfs:

$ cd ${PREFIX}/uclibc/lib
$ for file in libuClibc ld-uClibc libc libdl \
> libcrypt libm libresolv libutil
> do
> cp $file-*.so ${PRJROOT}/rootfs/lib
> cp -d $file.so.[*0-9] ${PRJROOT}/rootfs/lib
> done

157

● Copying all uClibc components:
$ cd ${PREFIX}/uclibc/lib
$ cp *-*.so ${PRJROOT}/rootfs/lib
$ cp -d *.so.[*0-9] ${PRJROOT}/rootfs/lib

● No need to strip uClibc libraries, they are stripped
by the uClibc build script.

158

7. Kernel modules
● Kernel modules are located in /lib/modules, so they

must be installed in
${PRJROOT}/rootfs/lib/modules.

● Copying modules built earlier:
$ cp -a ${PRJROOT}/images/modules-2.6.37/* \
> ${PRJROOT}/rootfs

● Module loading customization (/etc/modprobe.conf
or /etc/modprobe.d/)

159

8. Device files
● All devices in Linux are seen as files (except

Ethernet interfaces.)
● Typical workstation distros use udev
● Keep a copy of Documentation/devices.txt handy
● See BELS table 6.3 for core set of /dev entries
● Properties of each /dev node:

● Filename (node name)
● Type (char / block)
● Major number (What type of device?)
● Minor number (Which instance of the device?)
● Permission bits

● No need to create these entries since AOSP does it
for us

160

9. Main system applications
● Unix systems rely on a common set of commands
● Standard distros have one binary per command
● May compile each relevant command one-by-one

or use packages that provide many commands in
a single binary:

1.Busybox

2.Distro

161

9.1. BusyBox
● Main package used in embedded Linux to provide

core set of Unix commands: busybox.net
[, [[, acpid, add-shell, addgroup, adduser, adjtimex, arp, arping, ash, awk, base64, basename, beep, blkid, blockdev,
bootchartd, brctl, bunzip2, bzcat, bzip2, cal, cat, catv, chat, chattr, chgrp, chmod, chown, chpasswd, chpst, chroot, chrt,
chvt, cksum, clear, cmp, comm, cp, cpio, crond, crontab, cryptpw, cttyhack, cut, date, dc, dd, deallocvt, delgroup, deluser,
depmod, devmem, df, dhcprelay, diff, dirname, dmesg, dnsd, dnsdomainname, dos2unix, du, dumpkmap, dumpleases,
echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, expand, expr, fakeidentd, false, fbset, fbsplash, fdflush, fdformat,
fdisk, fgconsole, fgrep, find, findfs, flock, fold, free, freeramdisk, fsck, fsck.minix, fsync, ftpd, ftpget, ftpput, fuser, getopt,
getty, grep, gunzip, gzip, halt, hd, hdparm, head, hexdump, hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown,
ifenslave, ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel,
kbd_mode, kill, killall, killall5, klogd, last, length, less, linux32, linux64, linuxrc, ln, loadfont, loadkmap, logger, login,
logname, logread, losetup, lpd, lpq, lpr, ls, lsattr, lsmod, lspci, lsusb, lzcat, lzma, lzop, lzopcat, makedevs, makemime, man,
md5sum, mdev, mesg, microcom, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, mkfs.vfat, mknod, mkpasswd,
mkswap, mktemp, modinfo, modprobe, more, mount, mountpoint, mpstat, mt, mv, nameif, nbd-client, nc, netstat, nice,
nmeter, nohup, nslookup, ntpd, od, openvt, passwd, patch, pgrep, pidof, ping, ping6, pipe_progress, pivot_root, pkill, pmap,
popmaildir, poweroff, powertop, printenv, printf, ps, pscan, pwd, raidautorun, rdate, rdev, readahead, readlink, readprofile,
realpath, reboot, reformime, remove-shell, renice, reset, resize, rev, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-
parts, runlevel, runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch, setconsole, setfont, setkeycodes,
setlogcons, setsid, setuidgid, sh, sha1sum, sha256sum, sha512sum, showkey, slattach, sleep, smemcap, softlimit, sort,
split, start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff, swapon, switch_root, sync, sysctl, syslogd,
tac, tail, tar, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time, timeout, top, touch, tr, traceroute, traceroute6, true, tty, ttysize,
tunctl, udhcpc, udhcpd, udpsvd, umount, uname, unexpand, uniq, unix2dos, unlzma, unlzop, unxz, unzip, uptime, usleep,
uudecode, uuencode, vconfig, vi, vlock, volname, wall, watch, watchdog, wc, wget, which, who, whoami, xargs, xz, xzcat,
yes, zcat, zcip

162

● Download BusyBox (1.26.2) to your ${PRJROOT}/
sysapps directory and extract it there.

● Move to the directory for the rest of the setup:
$ cd ${PRJROOT}/sysapps/busybox-1.26.2

● Configuration of BusyBox's options:
$ make menuconfig

163

164

● “Busybox Settings”:
● Cross-compiler prefix:

${TARGET}-

● BusyBox installation prefix:

${PRJROOT}/rootfs

● Build:
$ make

● Install:
$ make install

165

● Only one binary has been installed: /bin/busybox
● All commands are symbolic links to /bin/busybox
● Determining the command issued done through

main's argv[] and argc.
● Creating arbitrary links doesn't work
● BusyBox can be told to create hard-links
● Full command doc on web and in package
● Customizing the paths for the various shells:

Set path
PATH=/bin:/sbin:/usr/bin:/usr/sbin
export PATH

166

10. Auto-generating FSes/distros
● Yocto
● Buildroot
● PTXdist
● OpenWRT
● LTIB
● OpenEmbedded
● Gentoo

167

11. Creating a cross-dev toolchain
● crosstool-ng: successor to crosstool
● Available at:

http://crosstool-ng.org
● Downloads, patches, builds, installs, etc.
● Comprises 23 steps
● Menuconfig-based
● Supports uClibc, glibc and eglibc
● Supports ARM, Blackfin, MIPS, PowerPC, SH, …
● Fairly well maintained

168

● Must make sure the following are installed on
Ubuntu in order to use crosstool-ng:
● gawk
● texinfo
● automake
● libtool
● cvs
● libncurses5-dev

● Use “sudo apt-get install” to get those

169

● Download and extract to ${PRJROOT}/build-tools
● Configure crosstool:

$ cd crosstool-ng-1.10.0/

$./configure

● Build and install crosstool-ng:
$ make

$ make install

● Configure crosstool:
$ cd ${PRJROOT}/build-tools

$ ct-ng menuconfig

170

● Options:
● Paths->Prefix directory: ${PREFIX}/${CT_TARGET}
● Target options->architecture: arm
● OS->Target OS: linux
● C library->C library: glibc
● C library->Extra flags: -U_FORTIFY_SOURCE
● Debug facilities: gdb & strace

● Build the toolchain:
$ ct-ng build

171

Native Android User-Space

1. Filesystem layout

2. Architecture vs. filesystem

3. Build system and filesystem

4. adb

5. Command line

6. Init

7. ueventd

8. Bionic

172

1. Filesystem layout

173

● /acct => Control Group mount point (Documentation/cgroups.txt)
● /cache => cache flash partition
● /d => Symlink to /sys/kernel/debug
● /data => Android's “/data” filesystem
● /dev => Device nodes
● /etc => Symlink to /system/etc
● /mnt => Temporary mount point
● /proc => procfs
● /root => unused
● /sbin => eventd and adbd
● /sdcard => SD card mountpoint
● /sys => sysfs
● /system => Android's “/system” filesystem
● /vendor => Symlink to /system/vendor

1.1. Root directory

174

1.1. /system

● /app => Stock apps installed
● /bin => Native binaries and daemons
● /etc => Configuration files
● /fonts => TTFs
● /framework => Android framework .jar files
● /lib => Native libraries
● /usr => Miniature “/usr”
● /xbin => Optional/Extra binaries

175

1.2. /data

● /anr => ANR traces
● /app => App install location
● /app-private => Protected apps
● /backup => For Backup Manager
● /dalvik-cache => Dalvik DEX cache
● /data => App data
● /dontpanic => Last panic output (console + threads) for “dumpstate”
● /local => Shell-writable space
● /misc => Misc. data (wifi, vpn, bluetooth, ...)
● /property => Persistent system properties (country, lang., ...)
● /secure => Secure Android data available
● /system => System data

176

2. Architecture vs. filesystem

177

3. Build system and filesystem

● Build templates
● BUILD_EXECUTABLE = /system/bin
● BUILD_SHARED_LIBRARY = /system/lib
● BUILD_PACKAGE = /system/app

● Default rights and ownership
● system/core/include/private/android_filesystem_config.h

– User IDs / names
● system/core/libcutils/fs_config.cpp

– android_dirs struct
– android_files struct

178

4. adb

179

4.1. What adb can do

● See online help for full details
● Managing device connections
● Remote commands:

● shell
● log dumping
● bug reports
● port forwarding
● dalvik debugging

180

● Filesystem commands
● push
● pull
● sync
● install / uninstall

● State-altering commands
● reboot
● run as root
● switching connection type
● controlling the emulator

● Tunneling PPP

181

5. Command line

● Shell:
● NetBSD shell up to 2.3/GB
● MirBSD Korn shell since 4.0/ICS

● Toolbox:
● Traditional Linux commands
● Global properties
● Input events
● Services control
● Logging
● ioctl
● Device wiping
● etc.

182

● In aosp:
● /system/core/toolbox

● In filesystem:
● /system/bin/toolbox

● Provides

alarm date getevent insmod ls mv powerd renice schedtop
smd top dd getprop ioctl lsmod nandread printenv rm
sendevent start umount cat hd ionice lsof netstat ps rmdir
setconsole stop uptime chmod df id kill mkdir
newfs_msdos r rmmod setkey sync vmstat chown dmesg
ifconfig ln readtty rotatefb setprop syren watchprops cmp
exists iftop log mount notify reboot route sleep wipe

183

● logcat
● netcfg
● debuggerd

184

6. Init

185

6.1. Config files

● Location:
● /init.rc
● /init.[board].rc

● Semantics:
● actions

– Property triggers
– Commands

● services (not related to system services or apps)
– Parameters

186

6.2. Global properties

● /dev/socket/property_service
● /dev/__properties__
● foo.bar.property
● ro.*
● persist.* => /data/property
● ctl.*
● net.change

187

● Std files:
● /system/build.prop
● /default.prop

● Other files:
● /system/default.prop
● /data/local.prop

● Code:
– property_get("dalvik.vm.heapsize", heapsizeOptsBuf+4, "16m");

188

7. ueventd

189

7.1. /ueventd.rc

/dev/null 0666 root root

/dev/zero 0666 root root

/dev/full 0666 root root

/dev/ptmx 0666 root root

/dev/tty 0666 root root

190

8. Bionic

● In aosp:
● /bionic

● In filesystem:
● /system/lib

● Provides:
● libc
● libm
● libdl
● libstd++
● libthread_db
● linker

191

System Services and Framework
Internals

1. Kickstarting the Framework

2. Utilities and Commands

3. Native Daemons

4. System Services Internals

5. Hardware Abstraction Layer

6. Android Framework

192

1. Kickstarting the Framework

● Core building blocks
● System services
● Boot animation
● Dex optimization
● Apps startup

193

1.1. Core building blocks

● Service manager
● Zygote:

● ART
● Preloaded classes
● libandroid_runtime.so

194

1.2. System services

195

1.3. Boot animation

● Default boot animation
● bootanimation.zip
● setprop debug.sf.nobootanimation 1

196

1.4. Dex optimization

● Files:
● .jar
● .apk

● Directories:
● BOOTCLASSPATH
● /system/etc/permission/platform.xml
● /system/framework
● /system/app
● /vendor/app
● /data/app
● /data/app-private

197

1.5. Apps startup

● Input methods
● Persistent apps
● Home screen
● BOOT_COMPLETED intent
● APPWIDGET_UPDATE intent

198

2. Utilities and Commands

● General-purpose commands
● service
● dumpsys
● dumpstate
● rawbu

● Service-specific utilities
● am
● pm
● wm
● svc

199

● ime
● input
● monkey
● bmgr
● stagefright

● Dalvik utilities
● dalvikvm
● dvz
● dexdump

200

3. Native daemons

● servicemanager
● logd
● lmkd
● installd
● vold
● netd
● rild
● keystore

201

3.1. servicemanager

● In aosp:
● /frameworks/base/cmds/servicemanager/

● In filesystem:
● /system/bin/

● Provides:
● Context management for binder
● Service index for entire system

202

3.2. logd

● In AOSP
● /system/core/logd

● In filesystem:
● /system/bin/logd

● Provides:
● Logging services
● Manages multiple buffers

203

3.3. lmkd

● In AOSP
● /system/core/lmkd

● In filesystem:
● /system/bin/lmkd

● Provides:
● Low-memory kernel handler

204

3.4. installd

● In aosp:
● /frameworks/base/cmds/installd

● In filesystem:
● /system/bin/

● Provides:
● Package install/uninstall
● Sanity checks and verifications
● Interfaces with Package Manager service

205

3.5. vold

● In aosp:
● /system/vold/

● In filesystem:
● /system/bin/

● Provides:
● Volume mounter
● Auto-mount
● Auto-format mounted devices

206

3.6. netd

● In aosp:
● /system/netd/

● In filesystem:
● /system/bin/

● Provides:
● Management of aspects of networking
● Interfaces with Network Management service

207

3.7. rild

● In aosp:
● /hardware/ril/mock-ril/

● In filesystem:
● /system/bin/

● Provides:
● “Radio Interface Layer” to phone hardware

208

3.8. keystore

● In aosp:
● frameworks/base/cmds/keystore/

● In filesystem:
● /system/bin

● Provides:
● Store key-value pairs
● Security keys for connecting to network infrastructure

209

4. System Services Internals

● Services run by System Server
● Observing the System Server
● Calling on system services
● Inside a few system services
● Creating your own system service

210

4.1. Services run by the System
Server

Entropy Service Device Policy Audio Service
Power Manager Status Bar Headset Observer
Activity Manager Clipboard Service Dock Observer
Telephone Registry Input Method Service UI Mode Manager Service
Package Manager Backup Service
Account Manager
Content Manager Connectivity Service Recognition Service
System Content Providers Throttle Service Status Bar Icons
Battery Service Accessibility Manager
Lights Service Mount Service ADB Settings Observer
Vibrator Service Notification Manager
Alarm Manager Device Storage Monitor

Location Manager
Sensor Service Search Service
Window Manager

Wallpaper Service

NetStat Service
NetworkManagement Service AppWidget Service

DiskStats Service

Init Watchdog

DropBox Service
Bluetooth Service

211

4.1.1. Some stats

● frameworks/base/services/core/java/com/
android/server:
● 15 M
● ~550 files
● 326 kloc

● Activity manager:
● 2.6M
● 60+ files
● 58 kloc

212

4.2. Observing the System Server

● Logcat
● dumpsys

213

4.2.1. logcat

● Find the System Server's PID
$ adb shell ps | grep system_server

system 63 32 120160 35408 ffffffff afd0c738 S system_server
● Look for its output:

$ adb logcat | grep “63)”
...
D/PowerManagerService(63): bootCompleted
I/TelephonyRegistry(63): notifyServiceState: 0 home Android Android 310260 UMTS CSS not supp...
I/TelephonyRegistry(63): notifyDataConnection: state=0 isDataConnectivityPossible=false reason=null
interfaceName=null networkType=3
I/SearchManagerService(63): Building list of searchable activities
I/WifiService(63): WifiService trying to setNumAllowed to 11 with persist set to true
I/ActivityManager(63): Config changed: { scale=1.0 imsi=310/260 loc=en_US touch=3 keys=2/1/2 nav=3/1 ...
I/TelephonyRegistry(63): notifyMessageWaitingChanged: false
I/TelephonyRegistry(63): notifyCallForwardingChanged: false
I/TelephonyRegistry(63): notifyDataConnection: state=1 isDataConnectivityPossible=true reason=simL...
I/TelephonyRegistry(63): notifyDataConnection: state=2 isDataConnectivityPossible=true reason=simL...
D/Tethering(63): MasterInitialState.processMessage what=3
I/ActivityManager(63): Start proc android.process.media for broadcast
com.android.providers.downloads/.DownloadReceiver: pid=223 uid=10002 gids={1015, 2001, 3003}
I/RecoverySystem(63): No recovery log file
W/WindowManager(63): App freeze timeout expired.
...

214

4.2.2. dumpsys
Currently running services:
 SurfaceFlinger
 accessibility
 account
 activity
 alarm
 appwidget
 audio
 backup
...
 wifi
 window

DUMP OF SERVICE SurfaceFlinger:
+ Layer 0x396b90
 z= 21000, pos=(0, 0), size=(480, 800), needsBlending=1, needsDithering=1, invalidat ...
0]
 name=com.android.launcher/com.android.launcher2.Launcher
 client=0x391e48, identity=6
 [head= 1, available= 2, queued= 0] reallocMask=00000000, inUse=-1, identity=6, status=0
 format= 1, [480x800:480] [480x800:480], freezeLock=0x0, dq-q-time=53756 us
...

215

4.3. Calling on System Services

● Use getSystemService
● Ex: NotificationManager Object reference:

String ns = Context.NOTIFICATION_SERVICE;

NotificationManager mNotificationManager = (NotificationManager) \
getSystemService(ns);

● Prepare your content
● Call on the object:

mNotificationManager.notify(HELLO_ID, notification);

216

4.4. Inside a few System Services

● Get the AOSP ... repo, etc.
● Tricks:

● xref.opersys.com
● Import into Android Studio
● Use reverse-engineering tools:

– Imagix
– Rationale
– Lattix
– Scitools
– ...

● Be patient, this isn't documented anywhere ...

217

4.4.1. ActivityManager

● Start new Activities, Services
● Fetch Content Providers
● Intent broadcasting
● OOM adj. maintenance
● Application Not Responding
● Permissions
● Task management
● Lifecycle management

218

● Ex. starting new app from Launcher:
● onClick(Launcher)
● startActivity(Activity.java)
● <Binder>
● ActivityManagerService
● startViaZygote(Process.java)
● <Socket>
● Zygote

219

4.4.2. Package Manager

● 25 kloc
● 1.2M
● Installation / removal
● Permissions
● Intent resolution (also IntentResolver.java)
● Called by Activity Manager

220

4.4.3. Window Manager

● Main thread
● Window manipulation
● Wallpaper handling
● Orientation
● Focus
● Layering
● Input event management

221

4.4.4. Notification Manager

● Toasts
● Notifications
● Sound playback (see NotificationPlayer.java)

222

4.4.5. Power Manager

● Wakelocks
● Sleep
● Brightness
● Lock

223

4.4.6. Network Management Service

● Talks to “netd” /system/netd
● Interface configuration
● Tethering
● DNS

224

4.4.7. Mount Service

● Mount / Unmount
● Format
● USB mass storage
● OBB

225

4.4.8. Location Manager

● Manage location providers
● getBestProvider()
● Proximity alerts
● Last known location

226

4.4.9. Status Bar Manager

● Expand / collapse
● Icon visibility
● Reveal callbacks
● Callbacks for notification manager

227

4.4.10. Backup Manager

● Enable / disable
● Transport management
● backupNow()
● ...

228

4.5. Creating your own System
Service

● Add your code to:
frameworks/base/services/core/java/com/android/server/

● Have the SystemServer.java init+reg. your service
● Define hardware API for apps
● Expose through:

● frameworks/base/core/java/android/os/[server].aidl
● Call on native “driver” code through JNI
● Implement or connect to appropriate driver
● Create an app that calls on service
● May need to create new SDK ...

229

230

4.5.1. OpersysService.java

package com.android.server;

import android.content.Context;
import android.os.IOpersysService;
import android.util.Log;

public class OpersysService extends IOpersysService.Stub {
 private static final String TAG = "OpersysService";
 private Context mContext;
 private int mValue = 0;

 public OpersysService(Context context) {
super();
mContext = context;
Log.i(TAG, "System server started");

 }

 public void test(int val) {
Log.i(TAG, "test " + val);
MValue = val;

 }
}

231

4.5.2. IOpersysService.aidl

package android.os;
/**
* {@hide}
*/
interface IOpersysService {
String read(int maxLength);
int write(String mString);
void test(int val);
}

232

4.5.3. frameworks/base/Android.mk

...
 core/java/android/os/IPowerManager.aidl \
 core/java/android/os/IOpersysService.aidl \
 core/java/android/os/IRemoteCallback.aidl \
...

233

4.5.4. SystemServer.java

...
 try {
 Slog.i(TAG, "Opersys Service");
 ServiceManager.addService("opersys", new OpersysService(context));
 } catch (Throwable e) {
 Slog.e(TAG, "Failure starting OpersysService Service", e);
 }
...

Should eventually be Context.OPERSYS_SERVICE

234

4.5.5. HelloServer.java
package com.opersys.helloserver;

import android.app.Activity;
import android.os.Bundle;
import android.os.ServiceManager;
import android.os.IOpersysService;
import android.util.Log;

public class HelloServer extends Activity {
 private static final String DTAG = "HelloServer";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 IOpersysService om =
IOpersysService.Stub.asInterface(ServiceManager.getService("opersys"));
 try {

 Log.d(DTAG, "Going to call service");
 om.test(20);
 Log.d(DTAG, "Service called succesfully");

 }
 catch (Exception e) {

 Log.d(DTAG, "FAILED to call service");
 e.printStackTrace();

 }
 }
}

235

5. Hardware Abstraction Layer

/frameworks/base/services/java/...

/frameworks/base/services/jni/

/hardware/libhardware/

/device/[MANUF.]/[DEVICE]
/sdk/emulator/

Kernel or module

/frameworks/base/core/...

AOSP-provided
ASL

Manuf.-provided
Manuf. license

Manuf.-provided
GPL-license

236

● [aosp]/hardware/libhardware/include/hardware
● gps.h
● lights.h
● sensors.h

● [aosp]/hardware/ril/include/telephony/
● ril.h

● Examples in [aosp]/device/*/*
● Using JNI to call C functions

237

6. Android Framework

● Location and components
● android.*
● Customization

238

6.1. Location and components
● [aosp]/frameworks/base

● /cmds => native cmds and daemons
● /core => android.* and com.android.*
● /data => Fonts and sounds
● /graphics => 2D & Renderscript
● /include => “C” includes
● /keystore => security key store
● /libs => “C” libraries
● /location=> Location provider
● /media => Stagefright, codecs, etc.
● /native => Native code for some frameworks components
● /obex => Bluetooth obex
● /opengl => GL library and java code
● /packages => A few core packages (Status Bar)
● /services => System server
● /telephony => Phone related functionality
● /tools => A few core tools (aapt, aidl, ...)
● /voip => RTP & SIP interfaces
● /vpn => VPN functionality
● /wifi => Wifi manager, monitor, etc.

239

6.2. android.*

accessibilityservice content hardware pim speech
accounts database inputmethodservice preference test
annotation ddm net provider text
app debug nfc security util
appwidget emoji os server view
bluetooth gesture service webkit widget

240

6.3. Extending API – System service

● frameworks/base/core/java/android/
● app/ContextImpl.java
● content/Context.java
● os/OpersysManager.java

241

6.3.1. - app/ContextImpl.java

...

import android.os.IOpersysService;

import android.os.OpersysManager;

...

 registerService(OPERSYS_SERVICE, new ServiceFetcher() {

 public Object createService(ContextImpl ctx) {

 IBinder b =

 ServiceManager.getService(OPERSYS_SERVICE);

 IOpersysService service =

 IOpersysService.Stub.asInterface(b);

 return new OpersysManager(service);

 }});

...

242

6.3.2. content/Context.java

...

 /**

 * Use with {@link #getSystemService} to retrieve a

 * {@link android.nfc.NfcManager} for using NFC.

 *

 * @see #getSystemService

 */

 public static final String NFC_SERVICE = "nfc";

 /** The Opersys service **/

 public static final String OPERSYS_SERVICE = "opersys";

...

243

6.3.3. os/OpersysManager.java

package android.os;

import android.os.IOpersysService;

public class OpersysManager
{
 public void test(int value)
 {
 try {
 mService.test(value);
 } catch (RemoteException e) {
 }
 }

 public String read(int maxLength) {...}

 public int write(String stringVal) {...}

 public OpersysManager(IOpersysService service)
 {
 mService = service;
 }

 IOpersysService mService;
}

244

Project Treble

1. Distribution scheme before 8.x

2. Motivations

3. Enforcement

4. Traditional Android Release Flow

5. Treble's Intended Release Flow

6. Underneath the Framework

7. Linux Kernel

8. HIDL

9. VNDK

10. VINTF

11. VTS

12. Implications

13. Recommendations

245

1. Distribution scheme before 8.x

● Google releases new version of Android
● Ecosystem customizes it to new devices –

sometimes quite extensively
● Google enforces Compatibility Test Suite (CTS) –

guaranteeing developer API conformance
● Devices get certified and ship with GMS
●
● Devices rarely got upgrades

246

2. Motivations

● Updates: Android vs. iOS
● Android version propagation history
● “Official” Google Treble pitch
● Nature of Android

247

2.1. Updates: Android vs. iOS

Data from Apple as of January 18, 2018
https://developer.apple.com/support/app-store/

iOS Android

Data from Google as of February 5, 2018
https://developer.android.com/about/dashboards/

2.3.x Gingerbread

4.0.x Ice Cream Sandwich

4.1.x Jelly Bean

4.2.x Jelly Bean

4.3.x Jelly Bean

4.4.x KitKat

5.0.x Lollipop

5.1.x Lollipop

6.x Marshmallow

7.0.x Nougat

7.1.x Nougat

8.0.x. Oreo

8.1.x. Oreo

Earlier

IOS 10

IOS 11

248

2.2. Version propagation history

● Implications:
● Android comes out with cool new features
● Perception is iOS gets them first

● Disclaimer: This is my reading

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Dec
 2

00
9

Feb
 2

01
0

Apr
 2

01
0

Ju
n

20
10

Aug
 2

01
0

Oct
 2

01
0

Dec
 2

01
0

Feb
 2

01
1

Apr
 2

01
1

Ju
n

20
11

Aug
 2

01
1

Oct
 2

01
1

Dec
 2

01
1

Feb
 2

01
2

Apr
 2

01
2

Ju
n

20
12

Aug
 2

01
2

Oct
 2

01
2

Dec
 2

01
2

Feb
 2

01
3

Apr
 2

01
3

Ju
n

20
13

Aug
 2

01
3

Dec
 2

01
3

Feb
 2

01
4

Apr
 2

01
4

Oct
 2

01
3

Ju
n

20
14

Aug
 2

01
4

Dec
 2

01
4

Feb
 2

01
5

Oct
 2

01
4*

*
no

 d
at

a

Apr
 2

01
5

Ju
n

20
15

Aug
 2

01
5

*
no

 d
at

a

Ju
l 2

01
5*

Oct
 2

01
5

Dec
 2

01
5

Feb
 2

01
6

Apr
 2

01
6

Ju
n

20
16

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Aug
 2

01
6

Oct
 2

01
6*

Dec
 2

01
6

*
no

 d
at

a

Feb
 2

01
7

Apr
 2

01
7

Ju
n

20
17

Android version
1.1

1.5

1.6

2.0

2.0.1

2.1

2.2

2.3-2.3.2

2.3.3-2.3.7

3.0

3.1

3.2

4.0-4.0.2

4.0.3-4.0.4

4.1

4.2

4.3

4.4

Cupcake

Donut

Eclair

Froyo

Gingerbread

Honeycomb

Ice Cream
Sandwich

Jelly Bean

KitKat

Gingerbread

Eclair

Eclair

Honeycomb

Honeycomb

Jelly Bean

Jelly Bean

5.0 Lollipop

Ice Cream
Sandwich

5.1 Lollipop

6.0 Marshmallow

7.0-7.1 Nougat

249

2.3. “Official” Google Treble pitch

● From source.android.com:

“The Android 8.0 release includes Project Treble, a major re-
architect of the Android OS framework designed to make it
easier, faster, and less costly for manufacturers to update
devices to a new version of Android.”

● In short:
● Recognition that updates are a problem
● Identification of update issues:

– Difficult
– Long
– Costly

250

2.4. Nature of Android

● Anyone is free to download Android
● Google enforces certification for GMS
● Google has no ability to force upgrades
● Google can only incentivize

251

3. Enforcement

● “To ensure forward compatibility of vendor implementations, the
new vendor interface is validated by the Vendor Test Suite
(VTS), which is analogous to the Compatibility Test Suite (CTS).”

● In sum:
● Path to upgrade has been charted
● But ... Comply or we won't certify

● Not much choice – Android is the “only game in town” aside from
Apple's iOS.

● Worthy end-goal:
● 4 to 5 years of upgrades on a single device

252

4. Traditional Android Release Flow

● Release flow
● Simplified internals view
● Example phone circa early 2014
● Upgrade after 5.x/Lollipop release
● Upgrade after 6.x/Marshmallow release

253

4.1. Release Flow

254

4.2. Simplified Internals View

255

4.3. Example Phone Circa Early 2014

● Just for the sake of example ...
● Say you bought a phone in early 2014:

● Samsung device
● Qualcomm chipset
● Verizon network

● Runs Android 4.4/KitKat at time of purchase

Note: brands/companies used for illustration purposes only, no specific device is implied.

256

4.4. Upgrade after 5.x/Lollipop release

5.x Release

QualcommQualcomm

Are they still
selling this chip? 5.x BSP

Samsung

Are they still
selling this phone or

is it important?

5.x Upgrade

Verizon

Are customers
still buying this?5.x Gets to Users

November 2014

257

4.5. Upgrade to 6.x/Marshmallow?

October 2015

6.x/Marshmallow

Qualcomm

Really? ???

Samsung

Really, Really??

???

Verizon

Really, Really, Really??!?!?!

258

5. Treble's Intended Release Flow

● Initial release flow
● New internals paradigm
● Overall reworked internals
● Targeted upgrade flow
● Theory of future release cycles
● Requirement

259

5.1. Initial Release Flow

8.x Release

QualcommQualcomm

8.x BSP

Samsung

8.x-based SKU

Verizon

8.x-based Device

260

5.2. New Internals Paradigm

261

5.3. Overall Reworked Internals

262

5.4. Targeted Upgrade Flow

263

5.5. Theory of Future Release Cycles

9.x Release

10.x Release

...

264

5.6. Requirement

● Google must continue to support old vendor
interfaces.

● For an initial 8.x device, future framework release
must support 8.x hardware enablement:
● 9.x / P
● 10.x / Q
● 11.x / R
● ...

● Aim seems to be 4-5 releases

265

6. Underneath the Framework

● Architecture
● Integration points
● Certification before Treble
● Certification after Treble
● What's added by Treble?

266

6.1. Architecture

267

6.2. Integration Points

SE

268

6.3. Certification Before Treble

Compatibility Test Suite

269

6.4. Certification After Treble

Compatibility Test Suite

SE

Vendor Test Suite

Vendor Test Suite

270

6.5. What's added by Treble?

● Linux kernel requirements
● HIDL – Hardware Interface Definition Language
● VNDK – Vendor NDK
● VINTF – Vendor Interface
● VTS – Vendor Test Suite

271

HIDLVNDK

VINTF

HIDL
VINTF

272

7. Linux Kernel

● Basics
● Release flow
● Real-life
● Treble and the kernel
● Links

273

7.1. Basics

● Necessary for Android
● Existed prior to Android
● Decision to use based on Linux succcess
● Google downstream from kernel developers

274

7.2. Release Flow

0

Linux Kernel
Release

275

7.3. Real-Life

● End-of-Life kernels very common on Android
● Security issues
● While invisible, major implications for user
● Inconsistent kernel versions between vendors
● Inconsistent updates between vendors

276

7.4. Treble and the Kernel
● Separate deliverables based on each player's role in the update

ecosystem.
● VTS-enforced aspects
● Basic rules for:

● Kernel versions – use of LTS
● Basic config
● System call ABI/API
● FS + FS features

● LTS 4.4 supported for 6 years instead of 2
● Kernel customization through:

● Kernel config overrides
● Loadable modules
● DT overlays

277

7.5. Links

● Main doc from Google:
● https://source.android.com/devices/architecture/kernel/

● LTS:
● https://www.kernel.org/category/releases.html

278

8. HIDL

● HAL's role
● Traditional HAL before 8.x
● HIDL
● Links

279

8.1. HAL's Role

● Per-device-type hardware abstraction
● Example:

● SurfaceFlinger uses hwcomposer HAL
● Location uses gps HAL
● Lights uses lights HAL
● Etc.

● Google specifies HAL signature
● Manufacturer/SoC vendor provides HAL implementation
● Reference implementations:

● Leads devices found in AOSP
● SoC vendor reference designs/boards in BSP

280

8.2. Traditional HAL Before 8.x

● Google specifies HALs as “C” header files
● HAL module author uses header in implementation
● Resulting binary shipped as part of release
● Modules loaded at boot time by system services
● Headers could (and did) change between versions
● Required reworking, rebuilding, reshipping new

version
● To update to a new version of Android:

● All modules had to be updated, be they trivial or difficult

281

8.3. HIDL
● “Hardware Interface Definition Language”
● New layer under system services
● Formalized and versioned HAL interface definitions
● Similar to AIDL, yet different
● Example HIDLs in 8.x/Oreo:

● graphics/composer 2.1
● gnss 1.0
● Etc.

● Once published, a given HIDL definition is immutable:
● Even in 9.x/P, graphics/composer 2.1 and gnss 1.0 will be the same as in 8.x.

● Fresh port assumes using latest HAL sig available
● Most importantly:

● Modules created against a given signature should continue to work so long as that
signature is supported.

● Depends on Google, but incentives are aligned
● More on this in tomorrow's presentation

282

8.4. Links

● General doc:
● https://source.android.com/devices/architecture/hidl/

● C++
● https://source.android.com/devices/architecture/hidl-

cpp/
● Java

● https://source.android.com/devices/architecture/hidl-
java/

283

9. VNDK

● Before
● What VNDK does
● Links

284

9.1. Before

● “Anything goes” under the hood
● Sometimes taken to extremes
● Ex. major handset manufacturer w/ hot new device:

● Expecting:
– Trade press scrutiny
– Benchmarks

● So ... tweak everything for performance and battery:
– Libraries
– Core components
– Anything and everything under the sun

● Result: Significant delta between canonical AOSP and real
code/binaries shipping in devices.

● Therefore: Difficult to upgrade

285

9.2. What VNDK Does

● Provides a pre-defined way to mitigate/manage
differences between Google-minted libs and vendor libs.

● Quite a few concepts introduced by VNDK to define
library categories and explain how they are to be used.

● Boring/Tedious explanation (very dry)
● Refer to official doc
● Will need to assign this to someone on your team
● Google is trying to play funambulist on this

286

9.3. Links

● Main doc:
● https://source.android.com/devices/architecture/vndk/

287

 10. VINTF

● Basics
● Architecture
● Details
● Links

288

10.1. Basics

● Need to formalize version “handshake” between
device and OTA service on upgrade.

● Specifically, need to match:
● HIDL versions
● Kernel specifics
● SE policies
● Android Verified Boot (AVB) version

● Solution:
● Vendor Interface Object (VINTF)

289

10.2. Architecture

290

10.3. Details

● Device manifest:
● Is device's HW enablement supported by framework?

● Framework manifest:
● Does new framework provide what the device needs?

● Device compatibility matrix:
● What does device expect of new framework?

● Framework compatibility matrix:
● What does new framework expect of device?

● Google doc specifies:
● Manifest format
● Compatibility matrices
● Matching rules

● Need a good understanding as well
● Likely needs a person to be responsible for this as well

291

10.4. Links

● Main doc:
● https://source.android.com/devices/architecture/vintf/

292

 11. VTS
● Similar to CTS
● Ensures that all the above is followed
● Test categories:

● HIDL HAL Tests
● Kernel Tests
● LTP
● Linux Kselftest
● VNDK (Vendor Native Development Kit) Tests
● Performance Tests
● Fuzz Tests
● Security Tests

● Even w/o certification, passing CTS will simplify OTA

293

● Links:
● Main doc:

– https://source.android.com/compatibility/vts/
● More details (user manual, etc.):

– https://android.googlesource.com/platform/test/vts/+/
master/README.md

294

 12. Implications

● Significant reduction in customization for GMS
● Non-exhaustive no-go list:

● System service internals
● HAL definition reworking/extension
● Core library replacement by tweaking dependent components' APIs
● Tweaking existing SE policies
● Any change that impacts OTA
● Any change that breaks VTS

● Even permitted changes are complex, ex:
● Tweaking libraries vs. VNDK rules
● Using vendor-specific services instead of tweaking existing ones

295

● Big benefit in adhering to “vanilla” even if no GMS interest:
● Simplified OTA

● If no GMS, still as open as before to tweak everything:
● Price = reduced OTA capability, likely no path to ugprade, etc.

● Greater scrutiny required over SoC/partner work to ensure Treble
“conformance”.

● Incentive is there for SoC vendors since some of their customers
need GMS certification.

● Varying degrees of quality from board vendors and outsourcing
partners:
● Do your homework

296

 13. Recommendations

● Several years before Treble benefits materialize
● Solid ground established by Google
● Likely some organic learning left to iron kinks out
● In the mean time:

● Make sure you have a firm understanding of how Treble changes your Android device
design, development, integration and support plans.

● Have your technical teams review the Treble documentation made available by
Google and possibly seek training so they can start familiarizing themselves with its
intricacies.

● If certification is on your agenda, start paying special attention to the VTS in your
planning. If you have CTS as part of your checklists, a good start is adding
equivalent entries for VTS.

● When selecting partners or suppliers, make sure their work and/or the software they
deliver falls in line with Treble's requirements, especially if certification is a target.

297

Treble’s HIDL in Detail

1. Architecture Recap

2. Basics

3. HAL Architecture Rework

4. Walkthrough

5. Adding a New HIDL

6. Support Infrastructure

298

HIDLVNDK

VINTF

HIDL
VINTF

1. Architecture Recap

299

2. Basics

● HAL's role
● Traditional HAL before 8.x
● HIDL
● Links

300

2.1. HAL's Role

● Per-device-type hardware abstraction
● Example:

● SurfaceFlinger uses hwcomposer HAL
● Location uses gps HAL
● Lights uses lights HAL
● Etc.

● Google specifies HAL signature
● Manufacturer/SoC vendor provides HAL implementation
● Reference implementations:

● Leads devices found in AOSP
● SoC vendor reference designs/boards in BSP

301

2.2. Traditional HAL Before 8.x

● Google specifies HALs as “C” header files
● HAL module author uses header in implementation
● Resulting binary shipped as part of release
● Modules loaded at boot time by system services
● Headers could (and did) change between versions
● Required reworking, rebuilding, reshipping new

version
● To update to a new version of Android:

● All modules had to be updated, be they trivial or difficult

302

2.3. HIDL
● “Hardware Interface Definition Language”
● New layer under system services
● Formalized and versioned HAL interface definitions
● Similar to AIDL, yet different
● Example HIDLs in 8.x/Oreo:

● graphics/composer 2.1
● gnss 1.0
● Etc.

● Once published, a given HIDL definition is immutable:
● Even in 9.x/P, graphics/composer 2.1 and gnss 1.0 will be the same as in 8.x.

● Fresh port assumes using latest HAL sig available
● Most importantly:

● Modules created against a given signature should continue to work so long as that
signature is supported.

● Depends on Google, but incentives are aligned
● More on this in tomorrow's presentation

303

2.4. Links

● General doc:
● https://source.android.com/devices/architecture/hidl/

● C++
● https://source.android.com/devices/architecture/hidl-

cpp/
● Java

● https://source.android.com/devices/architecture/hidl-
java/

304

3. HAL Architecture Rework

● Overall architecture
● Detailed architecture / Java
● Detailed architecture / C++

305

3.1. Overall Architecture

306

3.2. Detailed Architecture / Java

307

3.3. Detailed Architecture C++

308

4. Walkthrough

● JNI Layer
● HIDL Layer
● HIDL Glue

309

4.1. JNI Layer
● JNI Java<->C/C++ method/function registration -- same before and after Treble:

● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/frameworks/base/services/java/com/android/server/SystemServer.java
● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/frameworks/base/services/java/com/android/server/SystemServer.java#367
● System.loadLibrary("android_servers"); ==> Loads libandroid_servers.so

● This file defines which JNI files to compile into libandroid_servers.so:
● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/frameworks/base/services/core/jni/Android.mk
● Including: com_android_server_lights_LightsService.cpp

● This file defines the rules to build libandroid_servers.so:
● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/frameworks/base/services/Android.mk

● Another file compiled into libandroid_servers.so is onload.cpp:
● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/frameworks/base/services/core/jni/onload.cpp
● That file contains a function called: JNI_OnLoad()
● JNI_OnLoad() is automatically called by ART when libandroid_servers.so is loaded.

● JNI_OnLoad contains calls to JNI registration functions, such as register_android_server_LightsService(env);
● http://aosp.opersys.com/xref/android-8.1.0_r1/xref/frameworks/base/services/core/jni/

com_android_server_lights_LightsService.cpp:register_android_server_LightsService()
● JniRegisterNativeMethods()

● jniRegisterNativeMethods() calls into the ART VM to register C/C++ calls against a Java class.

310

4.2. HIDL Layer

● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/frameworks/base/services/
core/java/com/android/server/lights/LightsService.java:
● LightsService constructor
● setLightLocked calls on setLight_native

● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/frameworks/base/services/
core/jni/com_android_server_lights_LightsService.cpp:setLight_native()
● LightHal::associate();
● Ilight::getService();

● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/hardware/interfaces/light/2.0/
default/Light.cpp:HIDL_FETCH_ILight()
● GetLightDevice()
● hw_get_module ()
● dlopen() ==> results in lights.[hw-board].so to be loaded

311

4.3. HIDL Glue
● There are two main paths with HIDL:

● Same-Process (passthrough)
● Binderized

● This build file can generate BOTH options:
● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/hardware/interfaces/light/2.0/default/Android.mk

– android.hardware.light@2.0-impl.so ==> default same-process implementation
– android.hardware.light@2.0-service ==> binderized remote process

● The default binderized process in the case of lights (i.e. android.hardware.light@2.0-service) essentially loads
android.hardware.light@2.0-impl.so.

● Example *legacy* lights module implementation:
● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/device/huawei/angler/liblight/lights.c
● This is the file that would be calling into drivers in the kernel.

● The decision to use passthrough vs. binderized service depends on the board-specific manifest.xml:
● http://aosp.opersys.com/xref/android-8.1.0_r9/xref/device/generic/goldfish/manifest.xml

312

5. Adding a New HIDL

● New interface definition
● Use of update-makefiles.sh
● Use of hidl-gen
● See/implement default implementation
● Tweak default implementation makefiles
● Add entry in product manifest

313

6. Support Infrastructure

● HIDL tools (host + device) + libraries
● Manifest file parts + device-specific mk files
● Online doc/reference
● On-device:

● File locations
● Loaded files in address space
● Processes
● Etc.

314

Inside Android's UI

● Android's UI, what's that?
● Architecture Basics
● Display Core
● OpenGL
● Input Layer
● Relevant Apps and Services
● System Startup
● References and Pointers

315

1. Android's UI, what's that?

●SoC / GPU
●Touch input
●LCD
●Keyboard

???

316

1.1. What's NOT covered here

● Media layer
● StageFright
● Video playback
● Camera
● DRM
● Etc.

317

2. Architecture Recap

● Hardware used to run Android
● AOSP
● Binder
● System Services
● HAL

318

319

320

321

322

323

/frameworks/base/services/java/...

/frameworks/base/services/jni/

/hardware/libhardware/

/device/[MANUF.]/[DEVICE]
/sdk/emulator/

Kernel or module

/frameworks/base/core/...

AOSP-provided
ASL

Manuf.-provided
Manuf. license

Manuf.-provided
GPL-license

324

3. Display Core

● Display Hardware
● Classic Linux display stack
● Display stack in Android
● Kernel driver
● HAL definition
● HAL module
● Surface Flinger
● Window Manager
● Walkthrough

325

3.1. Display Hardware

MMU

IOMMU

326

3.2. Classic Linux display stack

327

3.3. Display stack in Android

328

329

3.4. Kernel driver
● Video memory management
● Mode setting
● Checking of parameters
● Motorola Xoom:

● /dev/nvhdcp1
● /dev/nvhost-ctrl
● /dev/nvhost-display
● /dev/nvhost-dsi
● /dev/nvhost-gr2d
● /dev/nvhost-gr3d
● /dev/nvhost-isp
● /dev/nvhost-mpe
● /dev/nvhost-vi
● /dev/nvmap
● /dev/tegra-crypto
● /dev/tegra_avp
● /dev/tegra_camera
● /dev/tegra_fuse
● /dev/tegra_rpc
● /dev/tegra_sema

● ... whatever hides in hwcomposer HAL module

330

3.5. HAL Definition

● /hardware/libhardware/include/hardware/hwcomposer.h

● struct hwc_procs:
● invalidate()
● vsync()

● struct hwc_composer_device:
● prepare()
● set()
● dump()
● registerProcs()
● query()
● *()

331

3.6. HAL module

● Skeleton /hardware/libhardware/modules/hwcomposer.cpp
● /system/lib/hw/hwcomposer.BOARD.so
● /system/lib/hw/gralloc.BOARD.so
● Ex. - Mot Xoom:

● hwcomposer.tegra.so
● gralloc.tegra.so

● Surface Flinger hook:
● /frameworks/native/services/surfaceflinger/DisplayHardware

– HWComposer.cpp
– Provides fake vsync if none is provided in HW

332

3.7. Surface Flinger

● Actual server:
● /frameworks/native/services/surfaceflinger

● Client side:
● /frameworks/native/libs/gui

● Client / Server interface:
● ISurfaceComposerClient.cpp
● ISurfaceComposer.cpp

● This is NOT an aidl'ed service
● All communication is manually

marshalled/unmarshalled

333

3.8. Window Manager

● Server side:
● /frameworks/base/services/java/com/android/server/wm/

– WindowManagerService.java
– Session.java

● Client side:
● /frameworks/base/core/java/android/view/

– WindowManager.java
– WindowManagerImpl.java
– ViewRootImpl.java

● Interfaces:
● IWindowManager.aidl
● IWindowSession.aidl

● Parameters (incl. z-order):
● See WindowManager.java

334

3.9. Walkthrough

● Activity Manager relies on Activity Thread
● AT calls on attach() and makeVisible()
● makeVisible does wm.addView()
● wm.addView() - this also called by StatusBar to display itself

● Creates a new ViewRootImpl
● Call on its setView()

● setView() calls on mWindowSession.addToDisplay(...)
● This results in call to WM's addWindow()
● ViewRootImpl's performTraversals()

● Calls on relayoutWindow()
● Calls to WM session's relayout()
● Call to WM's relayoutWindow()
● Call to createSurfaceLocked()
● new Surface(...)

335

frameworks/base/core/java/android/*/*
LocalActivityManager.java: startActivity()
- moveToState()
 - startActivityNow()
ActivityThread.java: startActivityNow()
- performLaunchActivity()
 - attach() -- gets AM handle and ties to it
- handleResumeActivity()
 - makeVisible()
Activity.java: makeVisible()
 - wm.addView()
WindowManagerGlobal.java: addView()
 - root = new ViewRootImpl()
 - root.setView()
ViewRootImpl.java: setView()
 - mWindowSession.addToDisplay()
IWindowSession.aidl: addToDisplay()

336

frameworks/base/services/java/com/android/server/wm/*
Session.java: addToDisplay()
- mService.addWindow()
WindowManagerService.java: addWindow()
...

frameworks/base/core/java/android/*/*
ViewRootImpl.java: performTraversals()
- relayoutWindow()
 - mWindowSession.relayout()

frameworks/base/services/java/com/android/server/wm/*
Session.java: relayoutWindow()
- mService.relayoutWindow()
WindowManagerService.java: relayoutWindow()
- surface = winAnimator.createSurfaceLocked();
WindowStateAnimator.java: createSurfaceLocked()
- new Surface();

337

4. OpenGL

● What's OpenGL?
● What's in a modern-day GPU?
● Software layers involved
● Kernel driver
● EGL libs
● Native interface
● Java interface
● Software GL implementation

338

4.1. What's OpenGL?

● It's just an API ... nothing but an API ...
● Check out Wikipedia
● Multiple versions out
● “ES” versions for embedded use
● Up to ES 3.2
● Android support up to ES 3.1

339

4.2. What's in a modern-day GPU?

● A tremendous amount of parallel processing units
● “SIMD”-like instruction set
● Video decoding/encoding capabilities
● ...

340

4.3. Software layers involved

● Kernel driver
● GL libraries
● Native GL API
● Java GL API

341

4.4. Kernel driver

PR
OP
RI
ET
AR
Y

342

4.5. EGL libs
● /frameworks/base/native/opengl/libs
● Entry point: /system/lib/libEGL.so
● Looks for /system/lib/egl/egl.cfg
● /system/lib/egl - Mot Xoom:

● egl.cfg
● libEGL_perfhud.so
● libEGL_tegra.so
● libGLES_android.so
● libGLESv1_CM_perfhud.so
● libGLESv1_CM_tegra.so
● libGLESv2_perfhud.so
● libGLESv2_tegra.so

● elg.cfg:

0 0 tegra

343

4.6. Native interface

● /frameworks/native/opengl/include
● EGL
● ETC1
● GLES
● GLES2
● KHR

344

4.7. Java interface

● GL libs required by libandroid_runtime.so
● /frameworks/base/opengl/java/android/opengl:

● ...

345

4.8. Software GL implementation

● /frameworks/native/opengl/libagl

346

5. Input Layer

● Kernel side - “std” Linux input layer:
● /dev/input/*

● No HAL use
● Native lib:

● libinput
● /frameworks/base/services/input

● Input Manager Service:
● /frameworks/base/services/java/com/android/server/input
● Started and directly tied to Window Manager

● Specific config files (see source.android.com)
● Soft keyboard:

● /frameworks/base/core/java/android/inputmethodservice
● Input methods:

● /packages/inputmehods
● http://developer.android.com/guide/topics/text/creating-input-method.html

347

6. Relevant Apps and Services

● Launcher
● StatusBar
● Wallpaper Manager Service
● Notification Service
● App Widgets

348

6.1. Launcher

● An app like any other
● See /packages/app/Launcher2

349

6.2. StatusBar

● A unique app
● See /frameworks/base/packages/SystemUI
● Connects to Status Bar Manager and gives an

interface it can use to call back into Status Bar
● Can use setIcon() to display icons on the right
● Provides a CPU usage add-on that renders

straight on rest of display using higher z-order

350

6.3. Wallpaper Manager Service

● See
/frameworks/base/services/java/com/android/se
rver/WallpaperManagerService.java

351

6.4. Notification Service

● Toasts
● Status bar notifications
● Gets handle to Status Bar Service at

instantiation
● Uses handle to communicate with Status Bar

352

6.5. App Widgets

● See
/frameworks/base/services/java/com/android/se
rver/AppWidgetService.java

353

7. System Startup

● Kernel
● Init
● Boot animation
● Launcher

354

7.1. Boot animation

● Started by Surface Flinger
● “bootanim” binary
● /frameworks/base/cmds/bootanimation
● Relies on bootanimation.zip w/ PNGs (nothing but)
● See

https://github.com/CyanogenMod/android_vendor_cm/tree/jellybean/pre
built/common/bootanimation

● Must contain a desc.txt:

<width> <height> <fps>

p <count> <pause> <path>

p <count> <pause> <path>

355

8. References and Pointers

● “Use the source, Luke”
● Jim Huang's “Android Graphics”
● Benjamin Zores' “Linux Magazine / France” articles
● MIPS article on graphics internals:

http://developer.mips.com/2012/04/11/learning-about-
android-graphics-subsystem/

● Stéphane Marchesin's “Linux Graphics Drivers: an
Introduction”

http://source.android.com/tech/input/index.html

356

Running Code in Android

1. Programming Languages

2. Standard App Mechanisms

3. Special App Mechanisms

4. Starting Apps

5. Native Utilities and Daemons

6. Java Utilities (and Daemons)

7. System Services

8. Shell Scripts

9. init.rc Commands and Services

10. C Libraries

11. Java Libraries

12. SDK add-ons

357

1. Programming Languages

● Java:
● Apps
● Platform

● C:
● Apps
● Platform

● JavaScript / CSS / HTML
● WebKit object

● C#:
● Mono for Android

● Misc.
● Any language for which there's a Linux compiler / interpreter

358

2. Standard App Mechanisms

● Components:
● Activity
● Service
● Content Provider
● Broadcast Receiver

● “Application” Component
● Widgets

359

2.1. “Application” Component

● See packages/apps/Phone:
● Especially src/com/android/phone/PhoneApp.java

/**
 * Top-level Application class for the Phone app.
 */
public class PhoneApp extends Application {
 PhoneGlobals mPhoneGlobals;

 public PhoneApp() {
 }

 @Override
 public void onCreate() {
 if (UserHandle.myUserId() == 0) {
 // We are running as the primary user, so should bring up the
 // global phone state.
 mPhoneGlobals = new PhoneGlobals(this);
 mPhoneGlobals.onCreate();
 }
 }

...

360

2.2. Widgets

● See:
https://developer.android.com/guide/topics/appwidgets

361

3. Special App Mechanisms

● Foreground services
● Persistent apps
● Sync adapters
● Backup agents
● Input methods engines
● Alarm services
● Live wallpapers
● Account managers
● Device administrators
● “Core” app

362

3.1. Foreground services

● Sticky notification icon
● Ex:

● Skype
● Avast

● See:
● https://developer.android.com/guide/components/

services.html#Foreground
● https://developer.android.com/reference/android/app/

Service.html#startForeground%28int,%20android.app.Notification%29
● https://developer.android.com/reference/android/app/

Notification.html#FLAG_FOREGROUND_SERVICE

363

3.2. Persistent apps

● Flag in <application> decl. in manifest:

 android:persistent="true"
● For “system” apps only
● Will cause app to be kept alive by ActivityManager
● IOW:

● It'll be automagically restarted if it dies
● Lifecycle won't result in it dying

364

3.3. Sync adapters

● For sync'ing with a cloud service
● Typically for REST-based apps
● Ex.: a Twitter-like feed
● See:

● http://www.google.com/events/io/2010/sessions/
developing-RESTful-android-apps.html

365

3.4. Backup Agents

● Triggered by Backup Manager
● See:

● https://developer.android.com/guide/topics/data/
backup.html

366

3.5. Input methods Engines

● Virtual on-screen keyboards
● See:

● https://developer.android.com/guide/topics/text/
creating-input-method.html

367

3.6. Alarm services

● Cause Intent to trigger in the future:
● See:

● https://developer.android.com/reference/android/
app/AlarmManager.html

368

3.7. Live wallpapers

● Animated wallpapers
● See:

● http://www.vogella.com/articles/
AndroidLiveWallpaper/article.html

369

3.8. Account managers

● For managing accounts in Settings
● See:

● https://developer.android.com/reference/android/
accounts/AccountManager.html

370

3.9. Device administrators

● Enterprisification feature:
● See:

● https://developer.android.com/guide/topics/admin/
device-admin.html

371

3.10. “core” app

● Use this tag in <manifest> tag:

 coreApp="true"
● Used by:

● StatusBar
● SettingsProvider
● See frameworks/base/packages/

● See “onlyCore” variable in SystemServer.java
● Causees only core apps to start if set to “true”
● Default hard-coded as “false”
● PackageManagerService.java has detail of how it's used

372

4. Starting Apps

● Intents
● Content Resolvers

373

5. Native Utilities and Daemons

● Compile as part of AOSP:

BUILD_EXECUTABLE
● Build outside AOSP and merge:

● Link statically (like adbd), or
● Link dynamically (against Bionic or glibc or ...)

● Run like any regular Linux command-line tool
● Start from:

● adb shell
● init.rc
● shell script
● Android app (N.B. This will continue running independently)

● Plenty of existing examples: netd, vold, installd, etc.

374

5.1. Start from Android app

Process myUtil;
BufferReader myCliOutput;

myUtil =
 Runtime.getRuntime().exec("my_cli_util -P params");

myCliOutput =
 new BufferedReader(
 new InputStreamReader(
 myUtil.getInputStream()));

375

6. Java Utilities (and Daemons)

● Coded as a “library”
● Launched using app_process utility
● Use script to wrap call to app_process
● See frameworks/base/cmds for examples:

● am
● pm
● svc
● ...

● No known case of “daemon”, but should be feasible
● Closest is System Server, but it's started from Zygote, not directly from

app_process

376

7. System Services

● Start in:
● Existing Java system services
● App (like Phone or NFC)
● C daemon (like Media Service or SurfaceFlinger)

● Register with Service Manager
● Provide API speak with system service:

● In existing framework
● As SDK add-on

377

8. Shell Scripts

● Android has built-in shell
● Since 4.0, MirBSD Korn Shell
● See: https://www.mirbsd.org
● Start shell script like any other native utility
● For example, init.goldfish.rc does:

service goldfish-setup /system/etc/init.goldfish.sh
 user root
 group root
 oneshot

378

9. init.rc Commands and Services

● Edit relevant init.*.rc to:
● Add commands to existing actions
● Create new actions based on global property triggers
● Add new services

● See:
● system/core/root/init.rc
● device/[vendor]/[product]/init.*.rc

379

10. C Libraries

● Build libs as part of AOSP or using NDK:

BUILD_SHARED_LIBRARY
● Use library in native utility or daemon:

LOCAL_SHARED_LIBRARIES := libfoo ...
● Provide headers files as needed
● Can load library explicitly in Java, espc. for JNI
● See “HelloJNI” example in NDK for NDK ex.

380

public class HelloJni extends Activity
{
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 /* Create a TextView and set its content.
 * the text is retrieved by calling a native
 * function.
 */
 TextView tv = new TextView(this);
 tv.setText(stringFromJNI() + " " + pid());
 setContentView(tv);
 }

 /* A native method that is implemented by the
 * 'hello-jni' native library, which is packaged
 * with this application.
 */
 public native String stringFromJNI();
...
 /* this is used to load the 'hello-jni' library on application
 * startup. The library has already been unpacked into
 * /data/data/com.example.HelloJni/lib/libhello-jni.so at
 * installation time by the package manager.
 */
 static {
 System.loadLibrary("hello-jni");
 }
}

381

11. Java Libraries

● Build as part of AOSP:

BUILD_JAVA_LIBRARY
● Will generate a .jar
● See:

● http://www.vogella.com/articles/
AndroidLibraryProjects/article.html

● http://stackoverflow.com/questions/3642928/adding-
a-library-jar-to-an-eclipse-android-project

382

12. SDK add-ons

● See device/sample/, espc.:
● README
● products/sample_addon.mk
● sdk_addon/
● frameworks/PlatformLibrary/

● Creates a ZIP file
● Extract in [sdk-dir]/add-ons/

383

Debugging and Development

1. Development environment

2. Observing and monitoring

3. Interfacing with the framework

4. Working with the AOSP sources

5. Symbolic debugging

6. Detailed dynamic data collection

7. Benchmarking

8. Summing up

384

1. Development Environment

● Host / Target setup
● IDE / Editor
● Android Studio

385

1.1. Host / Target setup

386

387

1.2. IDE / Editor

Logos belong to their respective owners. This slide isn't CC-BY-SA.

388

1.3. Eclipse Setup

● Preparation
● Project importing
● AOSP fixups
● Browsing the sources

389

1.3.1. Preparation

● AOSP Basics:
● Get AOSP ... from Google or otherwise
● Extract if needed
● Configure, build, etc.

● Eclipse / ADT:
● Get ADT bundle from developer.android.com
● Extract
● Start and update and if needed

390

● Set up basic classpath file:
[aosp]$ cp development/ide/eclipse/.classpath .

● Adjust eclipse.ini
● On my ADT bundle, it's:

– adt-bundle-linux-x86_64-20130917/eclipse/eclipse.ini
● Change this:

-XX:MaxPermSize=256m
-Xms40m
-Xmx768m

● To this:

-XX:MaxPermSize=256m
-Xms128m
-Xmx768m

391

1.3.2. Project importing

● Start Eclipse
● Create new "Java project"

● Project name = your AOSP name
● Deselect "Use default location"
● Location = path to your AOSP
● Click "Next"
● Wait a little bit ...
● Click "Finish"
● Wait for it to build your project
● ... it likely will fail ...

392

1.3.3. AOSP fixups

● Need to fix AOSP classpath file and sources
● Assuming 4.3 here
● Add this:

<classpathentry kind="src" path="frameworks/opt/timezonepicker/src"/>
<classpathentry kind="src" path="frameworks/opt/colorpicker/src"/>
<classpathentry kind="src" path="frameworks/opt/datetimepicker/src"/>
<classpathentry kind="src"
path="frameworks/support/v8/renderscript/java/src"/>

● Remove this:
<classpathentry kind="src"
path="frameworks/support/renderscript/v8/java/src"/>

393

● Comment out a couple of things:
<!-- Redefines android.util.pools which confuses Eclipse

<classpathentry kind="src" path="packages/apps/Gallery2/src"/>

<classpathentry kind="src" path="packages/apps/Gallery2/src_pd"/>

<classpathentry kind="src"
path="packages/apps/Gallery2/gallerycommon/src"/>

-->

<!--

<classpathentry kind="src" path="packages/apps/Nfc/src"/>

<classpathentry kind="src" path="packages/apps/Nfc/nci/src"/>

-->

<!--

<classpathentry kind="src" path="frameworks/ex/carousel/java"/>

-->

394

● Manually build the following (cd to and "mm") --
or remove from .classpath:

packages/apps/Stk
packages/screensavers/WebView
development/samples/ApiDemos
development/samples/HelloActivity
development/samples/Home
development/samples/LunarLander
development/samples/NotePad
development/samples/RSSReader
development/samples/SkeletonApp
development/samples/Snake

395

● Edit
packages/apps/Launcher2/src/com/android/launcher
2/DragLayer.java and modify:

 private boolean isLayoutRtl() {

● to
 public boolean isLayoutRtl() {

● Now: right-click on project and select "Refresh"
● It might still show "x" on some parts until it's done

rebuilding the project

396

1.3.4. Browsing the sources

● Mouse-over object type to be taken to declaration
● Browse classes through “Outline”
● Browse Call Hierarchy
● View recently viewed files (Ctrl-e)
● Many other shortcuts, see:

● http://source.android.com/source/using-eclipse.html
● Issues:

● Can't compile with Eclipse ... still need “make”
● For Java only

397

2. Observing and Monitoring

● Native
● Framework
● Overall

398

2.1. Native

● schedtop
● librank
● procmem
● procrank
● showmap
● latencytop

399

2.2. Framework

● dumpsys
● service

400

2.3 Overall

● logcat
● dumpstate / bugreport
● watchprop / getprop

401

402

3. Interfacing With the Framework

● start / stop
● service call
● am
● pm
● wm
● svc
● monkey
● setprop

403

4. Working with the AOSP Sources

● You really need to check build/envsetup.sh
● Some tricks:

● godir
● croot
● mm
● m
● jgrep
● cgrep
● resgrep

● It takes time to wrap your head around the tree

404

5. Symbolic Debugging - basics

405

5.1. DDMS / Eclipse integration

● Start DDMS:
● The one from the AOSP's command-line
● Not the one from Eclipse (“connection refuse”)

● It takes some time to load -- a few minutes
● Each process has a separate host-side socket
● Select the process you want to debug:

● It'll get port 8700

406

● Go to Eclipse:
● Run->Debug Configurations->Remote Java

Application
● Connection Type: "Standard (Socket Attach)"
● Host: localhost
● Port: 8700

407

5.2. Starting debug w/ Eclipse

● Order is finicky:
● Start your device or emulator
● Start command-line DDMS before Eclipse

otherwise you'll get this in logcat:
"I/jdwp (411): Ignoring second debugger -- accepting and
dropping"

● Start Eclipse
● Eclipse will complain that there's already a DDMS

running. Ignore that.

408

409

5.3. Debugging

● Select the process you want to debug in DDMS
● Go into Eclipse and click on the debug configuration you

created earlier
● Check that the little green bug is beside your process in

DDMS
● Again, things can look like they're freezing, this is "normal"

for Eclipse ...
● Wait for Eclipse to show your Dalvik process in the

"Debug" *window* in the "Debug" *view* -- all threads
should show

410

411

5.4. Debugging multiple processes

● In the debug *view* of eclipse, click on "Debug"
for every time you change the process in DDMS

● Wait for that process' threads to load in the
debug view

● Once threads are loaded, you can actually start
debugging

412

5.5. gdbserver - target side

● First, you'll need to make sure your C code is
compiled appropriately. Add this to Android.mk:

LOCAL_CFLAGS += -ggdb
LOCAL_STRIP_MODULE = false

● Attaching to running process
gdbserver --attach locahost:2345 30

● Start app for debugging with gdbserver prepended
gdbserver localhost:2345 service list

● Forward the port on the host:
$ adb forward tcp:2345 tcp:2345

413

5.6. gdb - host side

● Load file **FIRST** and then attach on host side
$ prebuilts/gcc/linux-x86/arm/arm-eabi-4.7/bin/arm-eabi-gdb
GNU gdb (GDB) 7.3.1-gg2
Copyright (C) 2011 Free Software Foundation, Inc.
...
(gdb) file out/target/product/generic/system/bin/service
(gdb) target remote localhost:2345
(gdb) b main
Cannot access memory at address 0x0
Breakpoint 1 at 0x2a00146c: file frameworks/native/cmds/service/service.cpp, line 59.
(gdb) cont
Continuing.
warning: Could not load shared library symbols for 11 libraries, e.g. /system/bin/linker.
...

Breakpoint 1, main (argc=2, argv=0xbe882b74) at frameworks/native/cmds/service/service.cpp:59
59 {
(gdb) n
60 sp<IServiceManager> sm = defaultServiceManager();
(gdb) n
59 {
(gdb) n
60 sp<IServiceManager> sm = defaultServiceManager();
(gdb) n
61 fflush(stdout);

414

5.7. Multi-threaded = #FAIL

$ prebuilts/gcc/linux-x86/arm/arm-eabi-4.7/bin/arm-eabi-gdb
GNU gdb (GDB) 7.3.1-gg2
...
(gdb) add-symbol-file out/target/product/generic/system/lib/libandroid_servers.so 0x4AFFC8B8
add symbol table from file "out/target/product/generic/system/lib/libandroid_servers.so" at
.text_addr = 0x4affc8b8
(y or n) y
(gdb) add-symbol-file out/target/product/generic/system/lib/libc.so 0x400339B8
add symbol table from file "out/target/product/generic/system/lib/libc.so" at
.text_addr = 0x400339b8
(y or n) y
(gdb) target remote localhost:2345
Remote debugging using localhost:2345
__ioctl () at bionic/libc/arch-arm/syscalls/__ioctl.S:10
10 mov r7, ip
(gdb) b com_android_server_power_PowerManagerService.cpp:162
Breakpoint 1 at 0x4b000a34: file
frameworks/base/services/jni/com_android_server_power_PowerManagerService.cpp, line 162.
(gdb) cont
Continuing.

Program terminated with signal SIGTRAP, Trace/breakpoint trap.
The program no longer exists.
...

415

● Even if you try attaching to the specific thread in the system
server running the system service you're trying to
instrument, you'll get the same issue.

● Probably requires rebuilding gdbserver with thread support:
● https://sourceware.org/ml/gdb/2009-01/msg00084.html
● http://code.google.com/p/android/issues/detail?id=9713

● Issues seems to be solved in NDK but not in gdbserver in
AOSP:
● http://comments.gmane.org/gmane.comp.handhelds.android.ndk/

12122

416

5.8. How to know what's the
address of the library

cat /proc/[system_sever PID]/maps | grep android_servers
4aff5000-4b007000 r-xp 00000000 1f:00 519 /system/lib/libandroid_servers.so
4b007000-4b008000 r--p 00011000 1f:00 519 /system/lib/libandroid_servers.so
4b008000-4b009000 rw-p 00012000 1f:00 519 /system/lib/libandroid_servers.so
cat /proc/[system_sever PID]/maps | grep libc.so
40027000-4006c000 r-xp 00000000 1f:00 601 /system/lib/libc.so
4006d000-4006f000 r--p 00045000 1f:00 601 /system/lib/libc.so
4006f000-40071000 rw-p 00047000 1f:00 601 /system/lib/libc.so
$ objdump -h out/target/product/generic/system/lib/libandroid_servers.so | grep
text
 7 .text 00006ae8 000078b8 000078b8 000078b8 2**3
$ objdump -h out/target/product/generic/system/lib/libc.so | grep text
 7 .text 0002f080 0000c9b8 0000c9b8 0000c9b8 2**3

4aff5000 + 000078b8 = 0x4AFFC8B8
40027000 + 0000c9b8 = 0x400339B8

http://linux-mobile-hacker.blogspot.co.uk/2008/02/debug-shared-library-with-gdbserver.html

417

5.9. JTAG

● Requires hardware device
● Sometimes interfaces with gdb
● Not Android specific
● Some allow transparent kernel/user-space debug
● Don't know of any that go all the way up to ART

418

6. Detailed Dynamic Data Collection

● Logging
● ftrace
● perf

419

6.1. Logging

● logcat is the most rapid/consistent way to
observe dynamic behavior.

● Trivial to add instrumentation points
● It just works ...

420

6.2. ftrace

● With 4.1, Google introduced systrace/atrace
● systrace is a Python script running on host side
● atrace is native Android binary
● systrace calls atrace via ADB
● atrace uses ftrace to capture kernel events
● Stack instrumented to feed events to ftrace
● Google's doc:

● https://developer.android.com/tools/help/systrace.html
● https://developer.android.com/tools/debugging/systrace.html

421

422

... trouble is ...

● I can't get it to work !*!@#$&!#*$!
● Default goldfish kernel doesn't have ftrace
● Able to build ftrace-enabled kernel for goldfish
● Can trace that system ... so long as I don't use

atrace/systrace ... WTF1?
● Not all Android kernels have ftrace enabled
● Generates HTML file that can only be read by

Chrome ... it doesn't work in Firefox. NIH?

1: The AOSP sources define WTF as “What a Terrible Failure”. We
trust they've done their research.

423

... still ...

● Have a look at these files:
● /external/chromium-trace/systrace.py
● /frameworks/native/cmds/atrace
● /frameworks/base/core/java/android/os/Trace.java
● /erameworks/native/include/utils/Trace.h
● /system/core/include/cutils/trace.h
● /frameworks/native/libs/utils/Trace.cpp

● Look for:
● ATRACE* in c/cpp files
● Trace.traceBegin()/trace.traceEnd() in Java files

424

atrace --help
usage: atrace [options] [categories...]
options include:
 -a appname enable app-level tracing for a comma separated list of
cmdlines
 -b N use a trace buffer size of N KB
 -c trace into a circular buffer
 -k fname,... trace the listed kernel functions
 -n ignore signals
 -s N sleep for N seconds before tracing [default 0]
 -t N trace for N seconds [defualt 5]
 -z compress the trace dump
 --async_start start circular trace and return immediatly
 --async_dump dump the current contents of circular trace buffer
 --async_stop stop tracing and dump the current contents of circular
 trace buffer
 --list_categories
 list the available tracing categories

425

atrace --list_categories
 gfx - Graphics
 input - Input
 view - View System
 webview - WebView
 wm - Window Manager
 am - Activity Manager
 audio - Audio
 video - Video
 camera - Camera
 hal - Hardware Modules
 res - Resource Loading
 dalvik - Dalvik VM

426

6.3. perf on Android on ARM

427

0xbench

AnTuTu

Passmark

Vellamo

Geekbench2

SunSpider

GLBenchmakr

Quadrant Standard Edition

Linpack

Neocore

3DMark

Epic Citadel

Androbench

CF-bench

SD Tools

RL Benchmark: SQL

Benchmark & Tunning

A1 SD Bench

Quick Benchmark Lite

3DRating benchmark

Smartbench 2011

NenaMark

Rightware Browsermark

An3DBenchXL

CaffeineMark

NBench

Methanol

AndEBench

SmartBench 2012

RealPi

7. Benchmarking

428

● Works relatively well:
● logcat
● Eclipse / DDMS
● Framework tools

● Works ok:
● gdb/gdbserver
● native tools
● ftrace

● Doesn't work (for me):
● systrace/atrace
● perf

8. Summing Up

429

9. Loose ends

● strace
● debuggerd
● tombstones
● anr traces

430

Kernel internals

1.Brief history
2.Features
3.General architecture
4.Source layout
5.Process management
6.Filesystems
7.Memory management
8.Communication facilities and interfacing
9.Loadable modules

431

10.Interrupt and exception management

11.Timing

12.Locking primitives

13.Kernel startup

432

1. Brief history
● Started on Minix by Linus Torvalds (who wanted to

call is Freax ...)
● Rechristened “Linux” by FTP site admin
● Once public, users and contributions grew at a very

rapid rate.
● Closed the GNU project's loop
● Most important events:

● 17 September 1991: Version 0.01
● 3 December 1991: Version 0.10
● 8 March 1992: Version 0.95

433

● 13 December 1992: Version 0.99
● 13 March 1994: Version 1.0
● 7 March 1995: Version 1.2.0
● 9 July 1996: Version 2.0
● 26 January 1999: Version 2.2.0
● 4 January 2001 : Version 2.4.0
● 17 December 2003: Version 2.6.0
● 21 July 2011: Version 3.0.0
● 12 April 2015: Version 4.0.0

434

2. Features
● Portable / Architecture-independent
● Scalable
● Monolithic
● Dynamically extensible (modules)
● Multi-user environment
● Multi-process / Multi-threading
● Memory protection
● Preemptable (starting in 2.5.x) ... but not real-time
● Symmetric multi-processor

435

● Slew of filesystems
● Slew of networking protocols / NICs
● Quite a few executable formats
● ...

436

3. General architecture
Applications

Kernel

System calls Signals

Process
Management

Kernel
Management

Memory
Management

Communication
Management

Virtual
Filesystem

Hardware-specific
Management

Protocols

NIC
drivers

FS

Block Char

CPU Basic
Hardware

Main
Memory

NIC HD ?

Interrupts / Traps / Exceptions

437

4. Source layout
Applications

Kernel

arch/ARCH/kernel/entry.S kernel/signal.c

kernel/*
sched.c,

fork.c, exit.c

kernel/*
capability.c,

sys.c,
softirq.c,

panic.c, ...

mm/*
arch/ARCH/

mm/
kernel/*

fs/pipe.c, fs/
fifo.c, ipc/*,

net/*
fs/*

arch/ARCH/*
net/*

drivers/
net/*

fs/*/*
driver

s/
block/

*

driver
s/

char/*

CPU Basic
Hardware

Main
Memory

NIC HD ?

arch/ARCH/kernel: irq.c, traps.c

438

arch 112MB=> architecture-dependent functionality
block 600KB => block layer
Documentation 17MB => main kernel documentation
drivers 231MB=> all drivers
fs 31MB => virtual filesystem and all fs types
include 20MB => complete kernel headers
init 150KB => kernel startup code
ipc 224KB => System V IPC
kernel 4.7MB => core kernel code
mm 2.2MB => memory management
net 20MB => networking core and protocols
scripts 1.1MB => scripts used to build kernel
tools 2.1MB => misc. kernel-related tools

439

● arch/
2.4M alpha
29M arm
1.4M avr32
5.3M blackfin
4.9M cris
1.4M frv
856K h8300
4.6M ia64
8.0K Kconfig
1.4M m32r
5.7M m68k
1.1M m68knommu
1.2M microblaze

11M mips
1.7M mn10300
2.4M parisc
13M powerpc
2.4M s390
636K score
5.4M sh
4.7M sparc
1.9M tile
1.9M um
8.5M x86
1.4M xtensa

440

● arch/powerpc:

2.0M boot
548K configs
2.0M include
2.1M kernel
384K kvm
216K lib
204K math-emu
472K mm
156K oprofile
3.4M platforms
848K sysdev
392K xmon

441

● drivers/
accessibility cpufreq hwmon mca parisc sbus uio
acpi cpuidle i2c md parport scsi usb
amba crypto ide media pci serial uwb
ata dca idle memstick pcmcia sfi vhost
atm dio ieee802154 message platform sh video
auxdisplay dma infiniband mfd pnp sn virtio
base edac input misc power spi vlynq
block eisa isdn mmc pps ssb w1
bluetooth firewire Kconfig mtd ps3 staging watchdog
cdrom firmware leds net rapidio tc xen
char gpio lguest nubus regulator telephony zorro
clocksource gpu macintosh of rtc thermal
connector hid Makefile oprofile s390 tty

442

● include/
acpi config drm keys math-emu mtd pcmcia rxrpc sound video

asm-generic crypto Kbuild linux media net rdma scsi trace xen

443

● Looking for something:
● Try grep
● Have a look at the Linux Cross-Referencing project:

– URL: http://lxr.linux.no/
– Code: http://lxr.sourceforge.net/

● Advanced kernel searching/understanding:
– CScope: http://cscope.sourceforge.net/
– KScope front-end: http://kscope.sourceforge.net/

● ETAGS (emacs)

444

5. Process management
● Process descriptor (include/linux/sched.h:

task_struct):

Process state => state
Identification => pid, tgid
Relationship => *parent, children
Scheduling => time_slice, sched_class,

rt_priority, prio, static_prio
Files => *files
Memory => *mm

445

● Main process list:
● Doubly-linked list
● List head: init_task

● Currently running process (macro): current
● Task creation:

kernel/fork.c:do_fork()
● Threads:

arch/ARCH/kernel/process.c:sys_clone()
● sys_clone() ends up calling do_fork()

446

● Scheduling:
● Process states: TASK_RUNNING, TASK_INTERRUPTIBLE,

TASK_UNINTERRUPTIBLE, TASK_STOPPED, TASK_TRACED,
EXIT_ZOMBIE, ...

● Main scheduling function:
kernel/sched/core.c: schedule()

● Scheduling policies:
– SCHED_OTHER

● Main scheduling policy for Linux processes
– SCHED_FIFO:

● Process has CPU until it gives it up or no other higher priority task
comes along.

– SCHED_RR:
● CPU is shared between “real-time” tasks

– ...

447

● Address space:
● include/linux/mm_types.h:mm_struct
● Fields: *mmap, mm_count, start_code, end_code,

start_data, end_data, start_brk, brk, start_stack,
arg_start, arg_end, env_start, env_end

● Special tasks:
● init => first process on system
● ksoftirqd/0 => soft-irq thread for avoiding process starvation
● events/0 => kernel's work queue handler (was keventd)
● khubd => USB hub thread
● kswapd0 => pageout daemon

448

6. Filesystems

● Virtual filesystem: fs/*
attr.c => file attributes
block_dev.c => block device access
buffer.c => buffer cache
char_dev.c => char device access
dcache.c => dentry (directory entry) cache
notify/ => directory change notifications
quot/ => disk quota
exec.c => exec() and its variants
fcntl.c => fcntl()
fifo.c => FIFO handling
file.c => manage process' fd array
file_table.c => file table manipulation
inode.c => inode handling
ioctl.c => ioctl()
locks.c => file locking

449

namei.c => pathname lookup
namespace.c => filesystem mounting
open.c => open()
pipe.c => pipe management
readdir.c => directory reading
read_write.c => read() and write(), and variants
select.c => select() and poll()
stat.c => stat()
super.c => filesystem type management

● Root filesystem mounting: init/do_mounts.c
prepare_namespace()

● RAM disk handling (within init/):
– do_mounts_initrd.c: initrd_load()
– do_mounts_rd.c: rd_load_image(), identify_ramdisk_image()
– do_mounts_initrd.c: handle_initrd(),

450

7. Memory management

● Arch-independent portion: mm/*
bootmem.c => boot memory allocation / handling
filemap.c => handling for mmap()'ed files
highmem.c => RAM above 896MB / up to 64 GB
memory.c => page and page table manipulation
mlock.c => memory region locking
mmap.c => mmap()
mprotect.c => memory protection mechanisms
mremap.c => mremap()
nommu.c (2.5) => functions for MMU-less processors
oom_kill.c => process killing when short on memory
page_alloc.c => page allocation / freeing
page_io.c => reading / writing swap pages
shmem.c => shared memory management
slab.c => memory allocation for kernel
swap.c => swap default

451

swapfile.c => swap space management
swap_state.c => swap page caching
vmalloc.c => memory region allocation
vmscan.c => page out daemon

● Architecture-dependent portion: arch/ARCH/mm/*
fault.c all => page fault handler
init.c all => memory initialization
ioremap.c x86=> remapping of I/O range to kernel space
pageattr.c x86=> page attributes handling
pgtable.c ppc=> page table manipulation
ppc_mmu.c ppc=> MMU handling for PPC
tlb.c ppc=> TLB flushing

452

8. Communication facilities and interfacing

● Signals => kernel/signal.c
● Pipes => fs/pipe.c
● FIFOs => fs/fifo.c
● Sockets => net/socket.c
● System V IPC => ipc/ : msg.c, sem.c, shm.c
● System calls => arch/ARCH/kernel/entry.S
● Adding new system calls:

1.Add entry to arch/ARCH/kernel/entry.S
2.Add entry to arch/ARCH/include/unistd.h
3.Add your function to the kernel's code

453

9. Loadable modules
● Allow dynamic loading and unloading of additional

kernel functionality.
● Managed by: kernel/module.c
● In practice, modules are .ko files (.o prior to 2.6)
● A single module's source tree can have a very

complex hierarchy.
● Every module must export functions using:

module_init() => called on insmod

module_exit() => called on rmmod

454

● Module macros:
MODULE_AUTHOR => module's author
MODULE_LICENSE => module's license (taint)
MODULE_DESCRIPTION => module's description
EXPORT_SYMBOL => export symbol for use by other
 modules
MODULE_PARM_DESC => module parameter description

...
● Requesting modules from within the kernel:

int request_module(const char * name, ...)

455

10. Interrupt and exception management
● Relevant files:

● arch/x86/kernel/
i8259.c => initialization and handling of 8259
irq.c => arch-dependent irq handling
entry.S => main assembly entry point
traps.c => CPU exception handling

● kernel/irq/
handle.c => arch-independent irq handling (exc. ARM)

● Exception examples:
● debug, overflow, bounds, fp, fault, nmi, etc.

● Exceptions path:
1.arch/x86/kernel/entry.S: hard-coded assembly
2.arch/x86/kernel/traps.c: custom function or macro generated

(DO_ERROR).

456

● Hardware interrupt code:
● arch/x86/kernel/entry.S: irq_entries_start

● Hardware interrupt path:
1.Assembly in entry.S

2. do_IRQ() in arch/x86/kernel/irq.c

3. __do_IRQ() in kernel/irq/handle.c:
1.Acks IRQ using callback from arch/x86/kernel/

i8259.c:mask_and_ack_8259A()

2.Calls handle_IRQ_event()

4.Handler provided by device driver is invoked

457

● Deferring handling with enabled interrupts:
● Softirq:

– Statically allocated
– Reentrant (must use locking mechanisms to protect data)
– Softirqs of same type can run on many CPUs in the same

time.
● Tasklets:

– Built on top of softirqs
– Dynamically allocatable
– The same tasklet type can't run on 2 CPUs in the same time.

● Bottom-halves:
– Built on top of tasklets
– Statically allocated
– There can only be one BH running at one time in the entire

system.

458

11. Timing

● Time-keeping variables in the kernel: x86
jiffies => incremented at every clock tick
wall_jiffies => last time xtime was updated
TSC => CPU-maintained counter (64-bit)

● Time handling:
● arch/x86/kernel/time.c

● Finding out what time it is:
● do_gettimeofday()
● get_cycles()
● jiffies

459

12. Locking primitives
● Never do cli / sti
● Always use existing locks to do the dirty-work
● Variants:

● Spinlocks with IRQ disabling: good for int handlers
spin_lock_irqsave(&lock_var, cpu_flags);

spin_unlock_irqrestore(&lock_var, cpu_flags);

● Vanilla spinlocks: good for most code not in int
spin_lock(&lock_var);

spin_unlock(&lock_var);

460

● Read/write locks:
– In reader:

read_lock_irqsave(&lock_var, cpu_flags);

read_unlock_irqrestore(&lock_var, cpu_flags);

– In writer:
write_lock_irqsave(&lock_var, cpu_flags);

write_unlock_irqrestore(&lock_var, cpu_flags);

● For a complete list, have a look at
include/linux/spinlock.h.

461

13. Kernel startup

Explanation for TQM860 PPC board
0.Kernel entry point:

arch/ppc/boot/common/crt0.S:_start

1. _start calls on:
arch/ppc/boot/simple/head.S:start

2. start calls on:
arch/ppc/boot/simple/relocate.S:relocate

3. relocate calls on:
arch/ppc/boot/simple/misc-embedded.c: load_kernel()

4. load_kernel() initializes the serial line and
uncompresses kernel starting at address 0.

462

6. relocate jumps to address 0x00000000, where kernel
start address is.

7. arch/ppc/kernel/head_8xx.S: __start
8. __start eventually calls init/main.c:start_kernel()
9. load_kernel() returns to relocate
10. start_kernel() does:

1. Locks kernel
2. setup_arch()
3. sched_init()
4. parse_args()
5. trap_init()
6. init_IRQ()

463

7. time_init()

8. console_init()

9. mem_init()

10. calibrate_delay() => loops_per_jiffy

11. rest_init()

11. rest_init() does:

1. Start init thread

2. Unlocks the kernel

3. Becomes the idle task

464

12. The init task:

1. lock_kernel()

2. do_basic_setup() => call various init() fcts

3. prepare_namespace() => mount rootfs

4. free_initmem()

5. unlock_kernel()

6. execve() on the init program (/sbin/init)

465

Device driver overview
1.Licensing reminder
2.Device driver model
3.Writing a char device driver
4.Writing a block device driver
5.Writing a network device driver
6.Time-keeping
7.Memory needs
8.Hardware access

9.Interrupt handling

10.Printing out messages to console

466

1. Licensing reminder
● Although the use of binary-only modules is

widespread, Kernel modules are not immune to
kernel GPL.

● Many kernel developers have come out rather
strongly against binary-only modules.

● If you are linking a driver as built-in, then you are
most certainly forbidden from distributing the
resulting kernel under any license other than the
GPL.

● If you're wary of the GPL, push critical driver-
intelligence to user-space.

467

2. Device driver model
● Device files

● Everything is a file in Unix, including devices
● All devices are located in the /dev directory
● Only networking devices do not have /dev nodes
● Every device is identified by major / minor number
● Can be allocated statically (devices.txt)
● Can be allocated dynamically
● To see devices present: $ cat /proc/devices
● Alternatives: devfs, sysfs (used to be driverfs)

468

● Char devices:
● Stream-oriented devices
● Manipulated using: struct file_operations*

● Block devices:
● Disk-oriented devices
● Manipulated using: struct block_device_operations*

● Networking devices
● All networking devices
● Manipulated using: struct net_device*

469

● Subsystem drivers:
● USB:

struct usb_driver *
● PCI
● I2C
● ...

470

3. Writing a char device driver
● Register char dev during module initialization
● Char dev registration: include/linux/fs.h

int register_chrdev(unsigned int,
 const char *,
 struct file_operations *);

● First param: Major number
● Second param: Device name (as displayed in

/proc/devices)
● Third param: File-ops

● Defined in include/linux/fs.h
● Contains callbacks for all possible operations on a char

device.

471

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned ...
int (*check_flags)(int);
int (*dir_notify)(struct file *filp, unsigned long arg);
int (*flock) (struct file *, int, struct file_lock *);

};

472

● Call register_chrdev() and pass it a valid
file_operations structure.

● Return 0 from initialization function to tell insmod
that everything is OK.

● That's it. Every time the device in /dev having the
same major number as the one you registered is
opened, you driver will be called.

● To remove char dev on rmmod:
int unregister_chrdev(unsigned int,
 const char *);

473

4. Writing a block device driver
● Register block dev during module initialization
● Block dev registration: include/linux/fs.h

int register_blkdev(unsigned int,

 const char *);

● First param: Major number
● Second param: Device name
● Disk allocation: include/linux/genhd.h

struct gendisk *alloc_disk(int minors);

● Block queue registration: include/linux/blkdev.h
extern void blk_init_queue(request_fn_proc *,

 spinlock_t *);

● Queue of pending I/O operations for device

474

● First param: Queue handler function
● Second param: Lock for accessing queue
● Call register_blkdev().
● Call alloc_disk() and pass it the number of disks.
● Call blk_init_queue() and pass it a valid callback.
● Return 0 from init function to tell insmod status

475

● Now, all block operations on your device (/dev
entry with same major number as driver) will be
queued to your driver.

● To remove block dev on rmmod:
void blk_cleanup_queue(request_queue_t *);
void put_disk(struct gendisk *disk);
int unregister_blkdev(unsigned int, const char *);

476

5. Writing a network device driver
● Register net dev during module initialization
● Net dev registration: include/linux/netdevice.h

int register_netdevice(struct net_device *dev);

● Param: net device ops
● Defined in include/linux/netdevice.h
● Contains all callbacks related to network devices
● This is a huge structure with A LOT of fields

● Call register_netdevice() and pass it a valid
net_device structure.

● Return 0 as status to insmod

477

● Your device will need to be opened by the kernel in
response to an ifconfig command.

● Your open() function must allocate a packet queue
to deal with packets sent to your device.

● Calling your device will depend on packet routing
at the upper layers of the stack.

● To remove: unregister_netdev(struct net_device *dev);

478

6. Time-keeping
● Simple ways to get the time

● jiffies: updated at every kernel tick
● do_gettimeofday(): good precision depending on arch
● get_cycles(): arch-independent call to get CPU cycle

count.
● Being notified in due time:

● Use timers: include/linux/timer.h
– jiffies resolution
– Use struct timer_list: contains expiry and callback
– Initialize timer: init_timer()
– Add timer to global timer list: add_timer()
– Remove timer before expiry: del_timer()

479

7. Memory needs
● Main kernel memory functions:

● kmalloc(size, type): up to 128KB of memory
● vmalloc(size): get large contiguous virtual memory

● Main types of memory allocation:
● GFP_KERNEL => normal alloc / may sleep
● GFP_ATOMIC => int handlers / never sleeps
● GFP_USER => user-space / low priority
● … See include/linux/slab.h for full list

480

8. Hardware access
● Main functions to be able to access hardware:

– Requesting region: request_mem_region()
– Releasing region: release_mem_region()
– Map physical region to VM: ioremap()

481

9. Interrupt handling
● Setting up an interrupt handler:

extern int request_irq(unsigned int,
 irq_handler_t, unsigned long, const char *, void *);

● First param: IRQ number
● Second param: handler
● Third param: flags for OS int delivery
● Four param: device name
● Fifth param: provide device ID in case of shared

interrupts.
● Disabling interrupt handler:

void free_irq(unsigned int, void *);

482

10. Printing out messages to console
● Meet the kernel's printf: printk()
● Defined: include/linux/kernel.h

int printk(const char * fmt, ...)

● Implemented: kernel/printk.c
● Can loose data in cases of large output
● Widely-used throughout kernel sources
● Don't call while holding lock, has lock contention of

its own.

483

A Quick Java Introduction

1. Parts

2. Hello World

3. What's missing from C/C++?

4. What's different?

484

1. Parts

● JDK
● Compiler
● Libraries

● JRE
● JVM

● Eclipse

485

2. Hello World

● The code:
class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

● Compiling:
$ javac HelloWorld.java

● Running:
$ java HelloWorld
Hello World!
$

486

3. What's missing from C/C++?

● Preprocessor:
● #include
● #define
● #ifdef/#endif

● Definitions:
● typedef
● struct
● union
● enum

487

● Keywords:
● goto

● Pointers:
● malloc/free

● Strings as arrays of char:
● Use “foo”.toCharArray() to get a char array
● Use foo = new String(charArray) to get a String

488

4. What's different?

● Garbage collection:
String myStr = new String(“foo”);
myStr = null;
myStr = new String(“bar”);

● String concatenation:
strC = strA + strB;

● Reflection:
// Direct call
new MyClass().foo();

// Call through reflection reflection
Class cls = Class.forName("MyClass");
cls.getMethod("foo", null).invoke(cls.newInstance(), null);

489

● Interfaces:
interface Foo
{
 bar();
}

public class MyClass implements Foo {
 public bar() {
 ...
 }
}

● Can implement multiple interfaces (v. multiple
inheritance)

● All methods declared as part of a class – no standalone
“functions”

490

● Anonymous classes:
public class MyClass {
 public static void main(String args[]) {
 new Thread(new Runnable() {
 @Override
 public void run() {
 System.out.println("Hello Anon”);
 }
 }).start();
 } // end main
}

491

● Inheritance:
public class Foo extends Bar {
 ...
}

● Package (first line in source file):
package com.foo.mypackage;

● Importing (using a package):
import com.foo.mypackage;

492

● Threads:
public class MyThread extends Thread {
 public void run() {
 System.out.println("Hello Thread World!");
 }

 public static void main(String args[]) {
 (new MyThread()).start();
 }
}

● Synchronization:
public synchronized void foo() {
 ...
}

493

● Checking type:
public class Foo extends Bar {
 ...
}
...
 foo myFoo = new Foo()
 if (myFoo instanceof Bar) {
 ...
 }

● Overrides:
public class Bar {
 public void aMethod() {
 ...
 }
}

public class Foo extends Bar {
 @Override
 public void aMethod() {
 ...
 }

494

● Arrays:
int[] myArray = new int[100];

● JavaDoc
● Junit
● JNI

495

● Packages:
java.applet
java.awt
java.awt.color
java.awt.datatransfer
java.awt.dnd
java.awt.event
java.awt.font
java.awt.geom
java.awt.im
java.awt.im.spi
java.awt.image
java.awt.image.renderable
java.awt.print
java.beans
java.beans.beancontext
java.io
java.lang
java.lang.ref
java.lang.reflect
java.math
java.net
java.nio
java.nio.channels
java.nio.channels.spi
java.nio.charset
java.nio.charset.spi

496

java.rmi
java.rmi.activation
java.rmi.dgc
java.rmi.registry
java.rmi.server
java.security
java.security.acl
java.security.cert
java.security.interfaces
java.security.spec
java.sql
java.text
java.util
java.util.jar
java.util.logging
java.util.prefs
java.util.regex
java.util.zip
javax.accessibility
javax.crypto
javax.crypto.interfaces
javax.crypto.spec
javax.imageio
javax.imageio.event
javax.imageio.metadata
javax.imageio.plugins.jpeg
javax.imageio.spi
javax.imageio.stream
javax.naming
javax.naming.directory
javax.naming.event
javax.naming.ldap
javax.naming.spi

497

javax.net
javax.net.ssl
javax.print
javax.print.attribute
javax.print.attribute.standard
javax.print.event
javax.rmi
javax.rmi.CORBA
javax.security.auth
javax.security.auth.callback
javax.security.auth.kerberos
javax.security.auth.login
javax.security.auth.spi
javax.security.auth.x500
javax.security.cert
javax.sound.midi
javax.sound.midi.spi
javax.sound.sampled
javax.sound.sampled.spi
javax.sql
javax.swing
javax.swing.border
javax.swing.colorchooser
javax.swing.event
javax.swing.filechooser
javax.swing.plaf
javax.swing.plaf.basic
javax.swing.plaf.metal
javax.swing.plaf.multi
javax.swing.table
javax.swing.text
javax.swing.text.html
javax.swing.text.html.parser
javax.swing.text.rtf
javax.swing.tree
javax.swing.undo

498

javax.transaction
javax.transaction.xa
javax.xml.parsers
javax.xml.transform
javax.xml.transform.dom
javax.xml.transform.sax
javax.xml.transform.stream
org.ietf.jgss
org.omg.CORBA
org.omg.CORBA.DynAnyPackage
org.omg.CORBA.ORBPackage
org.omg.CORBA.TypeCodePackage
org.omg.CORBA.portable
org.omg.CORBA_2_3
org.omg.CORBA_2_3.portable
org.omg.CosNaming
org.omg.CosNaming.NamingContextExtPackage
org.omg.CosNaming.NamingContextPackage
org.omg.Dynamic
org.omg.DynamicAny
org.omg.DynamicAny.DynAnyFactoryPackage
org.omg.DynamicAny.DynAnyPackage
org.omg.IOP
org.omg.IOP.CodecFactoryPackage
org.omg.IOP.CodecPackage
org.omg.Messaging

499

org.omg.PortableInterceptor
org.omg.PortableInterceptor.ORBInitInfoPackage
org.omg.PortableServer
org.omg.PortableServer.CurrentPackage
org.omg.PortableServer.POAManagerPackage
org.omg.PortableServer.POAPackage
org.omg.PortableServer.ServantLocatorPackage
org.omg.PortableServer.portable
org.omg.SendingContext
org.omg.stub.java.rmi
org.w3c.dom
org.xml.sax
org.xml.sax.ext
org.xml.sax.helpers

500

Thank you ...

karim.yaghmour@opersys.com

501

Acknowledgements:
● Some figures and snippets taken from Google's

Android “Dev Guide” at developer.android.com
distributed under the Apache 2.0 license.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367
	Slide 368
	Slide 369
	Slide 370
	Slide 371
	Slide 372
	Slide 373
	Slide 374
	Slide 375
	Slide 376
	Slide 377
	Slide 378
	Slide 379
	Slide 380
	Slide 381
	Slide 382
	Slide 383
	Slide 384
	Slide 385
	Slide 386
	Slide 387
	Slide 388
	Slide 389
	Slide 390
	Slide 391
	Slide 392
	Slide 393
	Slide 394
	Slide 395
	Slide 396
	Slide 397
	Slide 398
	Slide 399
	Slide 400
	Slide 401
	Slide 402
	Slide 403
	Slide 404
	Slide 405
	Slide 406
	Slide 407
	Slide 408
	Slide 409
	Slide 410
	Slide 411
	Slide 412
	Slide 413
	Slide 414
	Slide 415
	Slide 416
	Slide 417
	Slide 418
	Slide 419
	Slide 420
	Slide 421
	Slide 422
	Slide 423
	Slide 424
	Slide 425
	Slide 426
	Slide 427
	Slide 428
	Slide 429
	Slide 430
	Slide 431
	Slide 432
	Slide 433
	Slide 434
	Slide 435
	Slide 436
	Slide 437
	Slide 438
	Slide 439
	Slide 440
	Slide 441
	Slide 442
	Slide 443
	Slide 444
	Slide 445
	Slide 446
	Slide 447
	Slide 448
	Slide 449
	Slide 450
	Slide 451
	Slide 452
	Slide 453
	Slide 454
	Slide 455
	Slide 456
	Slide 457
	Slide 458
	Slide 459
	Slide 460
	Slide 461
	Slide 462
	Slide 463
	Slide 464
	Slide 465
	Slide 466
	Slide 467
	Slide 468
	Slide 469
	Slide 470
	Slide 471
	Slide 472
	Slide 473
	Slide 474
	Slide 475
	Slide 476
	Slide 477
	Slide 478
	Slide 479
	Slide 480
	Slide 481
	Slide 482
	Slide 483
	Slide 484
	Slide 485
	Slide 486
	Slide 487
	Slide 488
	Slide 489
	Slide 490
	Slide 491
	Slide 492
	Slide 493
	Slide 494
	Slide 495
	Slide 496
	Slide 497
	Slide 498
	Slide 499
	Slide 500
	Slide 501

