A Practical Approach to Linux Clusters on SMP Hardware

Karim Yaghmour
Opersys inc.
WWW.Opersys.com
karim@opersys.com

Abstract

Scalability is key to the success of any mature operating system. The classic approaches to scaling
operating system kernels rely on increasing the threading of the kernel. Such threading has, however, led
to maintenance problems for many kernels.

The Linux kernel development community is currently pondering whether to follow the path of ex-
treme threading or try an entirely different approach. One such approach, which has been promoted
by Larry McVoy and which is substantiated by the existing body of operating system research, is the
implementation of a cluster of kernels on SMP hardware. This paper presents a suggested architecture
for the implementation of such a cluster.

The architecture presented here is built around 5 components: the Adeos nanokernel, the Linux kernel,
a set of virtual devices, a kernel-mode bootloader, and existing clustering solutions. In this architecture,
the development of each component is independent of the development of the other components. The
implementation of this system does not require any central development authority, though it does require
the common definition of interfaces, and agreement on the architectural principles embodied in this
proposal.

As is shown, most components required to build such an architecture already exist. Each compo-
nent, nevertheless, requires some level of modification in order to be easily integrated in the architecture
presented. The required modifications and enhancements are discussed and various research avenues are

presented. So too are the caveats of the architecture and possible future enhancements.

Disclaimer

This paper is meant to encourage the discus-
sion about practical implementations of Linux-based
SMP clusters. It is by no means a complete design
document, though it does outline a feasible approach.
Comments and corrections are welcomed.

Main proposal features

e No changes to the kernel’s virtual memory
code.

e No changes to the kernel’s scheduler.

e No changes to the kernel’s lock granularity.

e Minimal low-level changes to kernel code.

e Reuse of many existing software components.

e Short-term accessibility.

1 Introduction

Recent discussions in the Linux development commu-
nity have made it clear that increased threading of
the kernel is likely to render the source unmaintain-
able. As pointed out by Larry McVoy, past attempts
to thread kernels beyond the 4 and 8 CPU thresh-
old have indeed resulted in very hard to maintain
kernels.

Many have argued that smart locking schemes
could be developed to facilitate the kernel’s scalabil-
ity. Others have argued that maintenance problems
are unlikely to happen to Linux because of the peer
review nature of open source.

Nevertheless, McVoy’s assessment is clearly sub-
stantiated by those who have worked on SMP clus-
ters including the team who worked on Disco [12, 15].
It is therefore not the purpose of this paper to con-
vince you that SMP clusters are the way to solve

kernel scalability problems. The assumption being
made is that you are already convinced of this and
are seeking implementation ideas.

The rest of this paper presents a scheme for im-
plementing Linux clusters on SMP hardware using
mostly existing software components and extending
some of them for the purpose. As we shall see, most
extensions are actually trivial and should not require
any substantial development effort. In addition, the
scheme presented here is rather intuitive and easily
extendable. The addition of any features which are
not currently part of this scheme should not require
any modification of the basic architecture.

Because the scheme suggested reuses many exist-
ing components, our discussion mainly concentrates
on the implementation details necessary to bring all
the existing components together with as little effort
as possible.

We start by reviewing previous work in 2. We
then present the overall system architecture in 3.
Each system component is then discussed separately.
The Adeos nanokernel is discussed in 4. The kernel-
mode bootloader is discussed in 5. Required changes
to the Linux kernel are described in 6. The vir-
tual devices to be created are described in 7. The
clustering components to be used are discussed in 8.
With all the components covered, we discuss how the
work on each component can be carried out in 9. Be-
fore finishing, we review some of the caveats of the
method suggested and possible improvements in 10.
Finally, we conclude in 11.

2 Previous work

There are many areas of previous work that need to
be investigated in order to get a good idea of what
needs to be done and how it needs to be done in oder
to get multiple Linux kernels running as a cluster on
SMP hardware. Here is a summary of the areas of
previous work covered:

e Efforts to increase Linux’s scalability

o SMP clusters

Kernel emulation/virtualization

Nanokernels

Conventional clusters

o Kernel bootloaders

The idea of running multiple production oper-
ating systems (OSes) in parallel on the same hard-
ware in order to achieve scalability with minimum

development effort is not new in itself. The most
prominent implementation example is Disco [12, 15].
The Disco approach consisted of taking a production
TIRIX OS and running multiple copies of it in parallel
using the Disco virtual machine monitor to achieve
hardware sharing. The techniques developed during
this work have actually been reused in the VMWare
product [1, 24]. In both cases, key hardware compo-
nents, such as the CPU, the memory, and basic I/O
devices, are virtualized by the monitor in order to
create the illusion of real hardware accesses.

Although the approach is indeed useful for main-
stream OSes which are not available in open source
form, it is not very well suited to Linux. As a matter
of fact, many of the basic assumptions made by the
Disco team do not hold if we accept the idea that ba-
sic OS modifications are possible and should indeed
be carried out in order to facilitate running this OS
on top of some hardware-abstracting software.

Instead of a virtualizing monitor, Linux lends it-
self quite well to the insertion of a small nanokernel
beneath it. This nanokernel’s purpose would be to
provide mechanisms to allow client OSes to request
hardware resources. Instead of implementing clever
hardware virtualization techniques, the client OSes
are aware of the nanokernel and can therefore best
use its capabilities.

The existing Adeos nanokernel is a prime can-
didate for use as the basis of such work. Adeos
was first introduced in [26] and aimed at providing
a patchless nanokernel for Linux. Given that the
techniques described in the original paper were not
portable, an implementation was developed as a ker-
nel patch [14, 2]. This latest release is easily portable
to other architectures than the x86. Adeos, however,
still requires some changes in order to accommodate
multiple Linux kernels executing in parallel in sepa-
rate address spaces.

As part of championing SMP clusters, Larry
McVoy discussed his ideas both privately and pub-
licly in many instances. [18] summarizes most of
these ideas from a fairly high level and [17] covers
some actual implementation details. Although the
argument for SMP clusters is definitely convincing,
some of the implementation ideas put forth require
further evaluation. Mainly, many of the efforts to
plan for single system image (SSI) components may
actually be alleviated by reusing existing software
components instead of creating new ones.

The approach taken in this paper, for instance,
is to suggest the use of existing clustering solutions
such as Beowulf 3, 22] and Mosix [4] to provide SSI
components. By doing so, we reuse existing software

which has been tested and proven to work.! Such
clustering software is, however, often built with the
premise that nodes are physically separated using
high-speed networking hardware. There are prob-
ably simplifications which can be made to these soft-
wares’ algorithms in light of the tight coupling found
in SMP systems.

Also, contrary to the suggestions made in [18],
it is unlikely that RTLinux, or RTAI for that mat-
ter, may be of any use to the implementation of
SMP clusters. Apart from the fact that these real-
time micro-kernels run Linux as their lowest-priority
task, hence imposing scheduling policies to the ker-
nel that needs to scale, they do not provide an envi-
ronment for running multiple operating systems con-
currently on the same hardware, nor do they provide
distributed services.

As described in [12, 15], SMP clusters require the
use of a nanokernel which enforces hardware sharing
among all existing OS instances and provides a set
of distributed services. Adeos already provides basic
nanokernel services for running multiple OSes on the
same hardware and should easily extend to provide
distributed services.

Another suggestion was to use User-Mode Linux
(UML) [5]. UML, however, requires an existing
userspace environment complete with virtual mem-
ory services and a C library in order to run. For best
performance, we want each individual kernel part of
the cluster to run on real bare hardware. UML is not
adapted to this use.

An entirely different approach is taken by the
Linux Scalability Effort [6]. Many parts of this ef-
fort aim at scaling the kernel’s own algorithms and
capabilities to handle N number of CPUs efficiently.
As stated earlier, this approach may cause problems
for the kernel’s maintenance.

The porting of Linux to NUMA machines is part
of these efforts [7]. Such ports are likely to reap the
benefits of the approach put forth here. In addition
to NUMA machines, however, this approach applies
to any standard SMP box available on the market.

In investigating the running of multiple Linux
kernels on the same hardware, one key issue is the
booting of multiple Linux kernels on the same hard-
ware. Most existing boot code which can load
an extra kernel while a kernel is already running,

such as the LOBOS LinuxBIOS loader [8], make
the assumption that they can rewrite over the ex-
isting kernel’s own structures. Of course, this is
not useful in our setup. The code most likely to
be useful to booting additional kernels on top of the
one already running is the current SMP boot code
(arch/i386/kernel /smpboot.c). Martin Bligh’s work
on booting Linux on NUMA-Q is also likely to be
quite useful.

3 Overall system architecture

The software architecture presented here consists of
4 main runtime components:

1. Adeos nanokernel

2. Linux kernel

3. Virtual devices?

4. Clustering components

The layering of these components is illustrated
in figure 1. The Adeos nanokernel provides a dis-
tributed hardware sharing layer. Instead of virtu-
alizing the hardware, the Linux kernel is modified
to make key hardware requests, such as interrupt
allocation and manipulation, physical memory allo-
cation, and device interrogation, to the nanokernel.
The nanokernel on the root virtual node (vnode)? is
the central Adeos arbitrator and is responsible for
providing each vnode’s nanokernel with the list of
hardware components the vnode’s kernel is entitled
to.

During the boot sequence, for instance, the root
vnode kernel will conduct PCI post or extract PCI
post information from the BIOS. User tools are pro-
vided on the root node to enable the attribution of
the various PCI resources to the vnodes. Once this
is done, the additional kernels that boot on other
vnodes will make their requests for PCI listing from
their local Adeos. This Adeos will communicate with
the root vnode to retrieve the list of devices belong-
ing to its kernel.*

The devices could also be provided by the root
node as boot parameters. The use of the nanok-
ernel, however, allows for device migration once all

I This paper does not attempt to evaluate the pros and cons of existing clustering software nor its ability to effectively pro-
vide a single system image. The assumption being made is that this existing software is adequate and capable of providing a

clustering APT along with single system image capabilities.

2These are virtual devices very much like the virtual devices used by Rubini and Corbet to present their examples in [23].

They are not virtualized devices as implemented by VM Ware.

3They are called virtual nodes because there need not be actual physical separation between the various nodes.
4The current scheme does not allow for the presence of ISA devices. Such devices would be complicated to manage, especially

because of the way ISA DMA operates.

Clustering and Single System | mge conmponents

— —

— —

—

Li nux

Vvdev

Li nux
Ker nel

wdev

Li nux
Ker nel

wdev

Li nux
Ker nel

i : Adeos Adeos Adeos Adeos E
s == s f = Ik
i CPU CPU il CPU CPU CPU CPU N CPU CPU |
I H H I

 Root vnode : Vnode 2 Vnode 3 Vnode 4
e — - —_ e e e e e m Hm e—m —m —_

Figure 1: Overall system architecture.

devices have been allocated and the system is run-
ning. A SCSI controller can therefore be disabled
on one vnode and then brought up on another vn-
ode. Also, the nanokernel can be the cornerstone of
fault-containment. When a vnode fails, the nanok-
ernel notifies the root vnode which takes care of the
cleanup and restart of the faulty vnode. Vnodes can
also be debugged independently from one another.
It should be fairly straight-forward to debug a ker-
nel running on one vnode using another vnode.

Device allocation is exclusive in this scheme. A
device allocated to a vnode is not shared by other vn-
odes. If an Ethernet card is given to vnode 3, then no
other vnode can actually see this PCI device, much
less use it. In addition, hardware accesses are left
as-is. No changes are made to intercept or modify
hardware accesses. Hence, all existing device drivers
can be used as-is.

Figure 1 illustrates 2 CPU vnodes, but vnodes
could be made of as many CPUs as desired. In the
extreme case, 1 CPU vnodes are possible. Given the
fact that there is one Linux kernel running per vnode,
1 CPU vnodes will waste physical memory resources
with little advantage given that Linux already scales
well up to 4 CPUs. Since Linux is already quite able
to handle 4 CPUs, 4 CPU vnodes are likely to be the
optimal setup.

Interestingly, vnodes can be made by an odd
number of CPUs. A 3 CPU vnode, for instance,

should be feasible. This could be potentially useful
in the case where the system designer would prefer
to allocate as little resources as possible to the root
node. On an 8 CPU machine, for instance, there
would therefore be 3 vnodes: the root vnode with
1 CPU, a second vnode with 3 CPUs, and a third
vnode with 4 CPUs. The problem with this setup,
however, is that the vnodes are not equal.

Each vnode runs its own copy of a kernel im-
age common to all vnodes and has its own separate
virtual address space, although all vnodes share the
same physical memory.? Tt follows that each vnode
has its own GDT, page tables, and interrupt table.
This setup differs from the OSlet concept discussed
in [17].

Communication with other vnodes is provided
by the nanokernel using shared physical memory
regions, which we will call bridges, and interrupts
(inter-processor interrupts in particular), which we
will call portals following the nomenclature devel-
oped for the SPACE nanokernel [21, 20, 19).

The allocation and management of bridges and
portals is the role of the nanokernel. These ba-
sic abstractions can then easily be used to build
more elaborate services using virtual device drivers.
Since these devices would be implemented as sepa-
rate components from the core kernel functionality,
no changes are required to the kernel’s code. In-
stead, these device drivers use the nanokernel’s API

5The use of a single virtual memory address space for all kernels is a roadblock to scalability.

directly to interact with other vnodes. Prime candi-
date for such drivers are virtual network interfaces
and a distributed filesystem. These services could
also be used to provide SSI components, such as a
unique /proc, or raw shared memory buffers.

Since these services are implemented using the
nanokernel’s API, Linux’s own virtual memory code
need not be changed in any way. Neither do the
scheduler or the lock granularity. These are the key
advantages of this scheme since maintainability of
the kernel is not influenced in any way. Any elabo-
rate service, such as process migration, can be im-
plemented separately from the existing kernel code.

It follows from this that running other OSes than
Linux as part of this cluster should be relatively easy.
The root node could be OpenBSD, for instance, and
would be the only node linked to a physical network
outside the local cluster box. This will be all the
more easier as the clustering and SSI components
are close to userspace.

The last piece of the puzzle is the clustering and
SSI components. Given that these issues have been
intensively studied and worked on in the context of
other projects, the best approach is to reuse existing
components. Beowulf and Mosix are prime candi-
dates for this because of their established user-base
and proven reliability. Since virtual network device
drivers can be implemented over Adeos’ bridges, it is
very likely that these packages may run unmodified
on the setup described here.

It would be best, of course, to provide the ca-
pability of running any clustering solution on top of
the current scheme. This would require a unified
approach to clustering on Linux, however. This is-
sue is beyond the scope of the current proposal, but
Marowksy-Brée has discussed it amply in [16].

4 Adeos nanokernel

The existing Adeos code already manages interrupts
on UP and SMP systems efficiently. It will require
modifications, however, in order to satisfy the re-
quirements of SMP clusters as described here.® The
future architecture of the Adeos nanokernel is pre-
sented in figure 2. The following subsections discuss
each part of the nanokernel. Note that the imple-
mentation of these services will also make the run-
ning of other kernels side-by-side with Linux much
easier.

4.1 Interrupt management

Adeos’ first and most important responsibility is to
manage interrupts and implement a flexible scheme
for interrupt handling. The interrupt pipeline de-
scribed in [26] will continue to be used, as it is very
well adapted to this purpose.

The interrupt pipeline will be used by some
of Adeos’ own components in order to implement
various services. The distributed sharing protocol
(DSP), for instance, is likely to use inter-processor
interrupts in order to communicate with other Adeos
instances. The DSP will then intercept these inter-
rupts to receive the messages of other Adeos nanok-
ernels.” Other “secret” interrupts may be used to en-
able userspace applications to communicate directly
with add-on services. It follows from this and from
the description provided in [27] that building a hard-
real-time cluster should be feasible.

Instead of using the flat model for the various
APICs, Adeos will need to use the cluster address-
ing model. Martin Bligh’s work on the use of this
addressing model in NUMA-Q machines should be
helpful to this end. Chapter 7 of [13] should be the
starting point.

4.2 Device management

The first vnode to boot is responsible for handing
over its device management to Adeos. This vnode
may be able to see all of the system’s devices, but it
still can’t use any devices which have been handed
out to other vnodes. Userspace tools will need to be
developed to enable the administrator logged-in on
the root vnode to manage the allocation of devices.

It should be feasible, for instance, for the cluster
administrator to enter commands such as: Transfer
device D from vnode X to vnode Y. The nanokernel
will then have to bring the device down on vnode X
and then bring it up on vnode Y. All such actions will
interact with Adeos in order to complete and would
use existing hotplugging capabilities extensively.

The programming of the various I/O APICs is
modified according to the attribution of devices so
that device interrupts go to the vnode which has been
attributed the device.

4.3 Physical memory management

Adeos is responsible for providing all the vnodes, ex-
cept the root one, with their initial physical memory.

6The assumption being made here is that Adeos is extended to provide additional functionality. It could be possible to leave
the current Adeos codebase unmodified and build the required services on top of the basic services already provided.
"Most of the communication between the nanokernels is actually implemented using shared physical memory regions, as

discussed below.

Li nux Ker nel

Adeos
I nterrupt Devi ce Physi cal
managenent nanagenent menory
managenent
Distributed
Shari ng Protocol

Har dwar e

Figure 2: The Adeos nanokernel and its facilities.

The kernel-mode vnode bootloader requests physi-
cal regions from Adeos. Once the vnode is started,
Adeos is then responsible for allocating and connect-
ing bridges.

The Adeos physical memory management code
will need to implement very smart policies. Specif-
ically, it will need to be capable of defragmenting
physical memory. Such defragmenting may requir-
ing the temporary freezing of all the vnodes using
a certain bridge. It follows that intensive alloca-
tion/freeing of bridges by vnodes will significantly
impact on the entire cluster. This extreme situation
is not typical of most cluster setups, however. In the
most likely scenario, each vnode will allocate a cer-
tain number of bridges at boot time and will continue
to use these bridges throughout its existence.

In order to alleviate the problems caused by tran-
sient bridges, Adeos could provide a separate alloca-
tion service for such bridges. The requester would
then be required to provide a callback function for
dealing with the relocation of the bridge to a different
physical memory location.

Different bridges can be implement with various
identification schemes. Named bridges would be rec-
ognized by all vnodes using a unique name. Such
bridges could be local to a vnode or global to the
cluster. Accessing a local named bridge requires the
vnode ID, while accessing a global named bridge re-
quires only the name of the bridge.

4.4 Distributed sharing protocol

In order to synchronize with one another, all the
Adeos nanokernels need to communicate with each
other using a distributed mechanism. This is the role
of the DSP. The implementation of the DSP proper

will require some additional research in order to im-
plement a scalable and flexible protocol which has
very low overhead. As with other components in the
system, the DSP will be implemented over shared
physical memory regions.

5 Kernel-mode bootloader

The kernel-mode bootloader (KMB) is in charge of
the startup of the non-root vnodes. Its main inter-
face is a command-line utility which takes the follow-
ing arguments:

e Pathname of the kernel image to load.

e CPU ID® on which it has to start the kernel.

Range of CPU IDs part of the vnode.
Vnode ID.

Size of physical memory attributed to this vn-
ode.

e List of devices belonging to this vnode.

The kernel image provided to the KMB should
actually be the same as the one running on the root
vnode. Hence, all vnodes would be running the exact
same kernel image. In order to automate the load-
ing of multiple vnodes instantly, it is probably best
to define a configuration file format for the KMB
userspace tool. Such a format is outside the scope of
this writing.

The parameters are then handed over to the ker-
nel module component of KMB through ioct1() or
a similar interface. The LinuxBIOS bootloader, LO-
BOS, passes a filename using an additional system

81t may be more appropriate to talk about the (logical/physical) APIC ID instead?

call. This is inconsequential since LOBOS is about
to write over the running kernel. Because adding
new system calls to a kernel which has to continue
running is not a desired side-effect, another method
is preferable.

Also, LOBOS reads the image as an executable
image using read _exec(). This may not be appro-
priate for our current scheme. The kernel module
indeed needs to use lookup_dentry(), as LOBOS
does, but its subsequent operation differs from LO-
BOS. ? Here are the steps carried out by KMB kernel
module:

1. Request physical memory from Adeos for vn-
ode. (This has to be a physically contiguous
memory region).

2. Remap physical region into current kernel’s vir-
tual memory.

3. Copy kernel image and boot parameters to
memory region. The boot parameters are: ID
of CPU to boot on, list of additional CPU IDs
that image has to boot, vnode ID, and allo-
cated physical memory range/size (mem=).

4. Set region as executable.

5. Inform Adeos of the initial resources the up-
coming vnode will be allowed to use. (PCI de-
vices).

6. Jump to the loaded image’s startup-32 func-
tion.10

7. Unmap physical region from current kernel’s
virtual memory.

For its part, startup_32 is modified to check very
early whether paging is already enabled. If it is so,
then its action differs from the existing procedure.
The modifications to the kernel’s initialization will
be described in detail in section 6.1.

6 Linux kernel changes

In order to run in the scheme described here, the
kernel needs slight modifications. The role of the
kernel and most of its existing functionality remains
unchanged, however. Mainly, the kernel knows of
a set of PCI devices it can probe for and a single
flat physical memory region it is entitled to manage

freely. These assumptions are left intact by the cur-
rent proposal.

There are 2 reasons for implementing changes in
the kernel for the current scheme:

1. Allow insertion of nanokernel beneath Linux.
2. Enable Linux to boot differently.

3 areas of the kernel need to be changed in order
to allow the insertion of the nanokernel: the PCI
subsystem, the interrupt management code, and the
locking primitives. The last 2 have already been suc-
cessfully modified as part of the current Adeos work.
The following subsections detail the required kernel
modifications, starting with modifications to kernel
initialization.

6.1 Initialization

At startup, the kernel usually assumes that it has
total control over any available and visible piece of
hardware. Linux here is no different from the major-
ity of existing OSes. Such an assumption will have to
change, however, if Linux clusters are to be possible
on SMP hardware.

First and foremost, Linux will have to be able to
boot in very strange physical addresses, sometimes
very high-up in the physical address space. It may
already be capable of dealing with such situations,
but this needs to be confirmed.

Hardware initialization will also need to change
in light of the fact that the kernel will only have ac-
cess to the hardware the Adeos PCI proxy allows it
to see. ISA-style probing, for one, should not be car-
ried out during the booting of any non-root vnode.
If necessary, then different kernel images should be
used for the root vnode and the non-root vnodes.

For its startup, the root vnode should be booted
with a vnode ID of 0, the list of CPU IDs part of the
root node, and a mem= parameter equal to the amount
of physical memory it should use. The rest of the
physical memory actually available will be handled
by the nanokernel.

The boot code in the kernel differs when it comes
to the startup_32 code. Instead of immediately set-
ting up the CPU’s table and enabling paging, the
code should first check if paging is already enabled.
If so, then the current image was loaded by KMB.
Otherwise, the normal code follows its course.

91nterestingly, nevertheless, LOBOS comes with a small script which uses objcopy to strip the kernel image from all its
headers and turn it into a bare executable. This script may not be very useful, however, since we need to be able to locate the

startup_32 symbol in the image to be started.

10 All references to startup-32 refer to the function in arch/i386/kernel /head.S.

In the case where paging is enabled, then the
code branches off and conducts an operation simi-
lar to that found in arch/i386/kernel /smpboot.c but
on itself. Essentially, the code sets the startup EIP
for the vnode CPU ID to be the physical address of
the beginning of the trampoline routine!! and sends
the appropriate IPI to the APIC of the vnode’s first
CPU. The code then returns and the KMB can con-
tinue where it left off.

Meanwhile, the other CPU has booted with a
fresh copy of Linux which will proceed through the
normal boot sequence since paging will not already
be active for it. It will load its own GDT, its own
IDT, and its own page tables. Anything it does af-
terwards is conducted in an entirely different address
space from the first kernel.

The main references for implementing this
scheme are the current SMP boot code and chapter
7 of [13].

It could be argued that the setup and boot opera-
tion of the vnode’s first CPU should be the responsi-
bility of the KMB instead of that of the kernel being
booted. There are, however, advantages in having
the booted kernel take care of setting up its own CPU
prior to booting. Mainly, the kernel’s booting on a
vnode is made independent from the bootloader. A
distributed fault-detection mechanism, for instance,
could have kernel images ready to go in kernel space.
When detecting a failure, the mechanism would fire
the kernel image without requiring the intervention
of the KMB. The developers of such a mechanism
would need to know very little about vnode kernel
booting. Also, various kernel versions with different
boot mechanisms can be supported. So can other
OSes.

The bootup of the additional CPUs in the vn-
ode is done very much the same way as the SMP
bootup is currently done. Some small changes may
be required nevertheless.

The root filesystem could be provided either as
an initrd or mounted via NFS using the virtual NIC
described below. Of course, each vnode that has a
SCSI controller with an attached physical HD can
mount its own device. It can also share it with other
vnodes using NFS or a distributed filesystem as dis-
cussed in section 7.

6.2 PCI subsystem

Linux’s current PCI subsystem can either retrieve its
data from the BIOS or conduct its own PCI post. In
the case of a non-root vnode, PCI posting is out of

the question and so is probing the BIOS to obtain
the device entries.

The PCI subsystem must be modified to make
its device listing requests to Adeos instead of doing
them directly. In the case of the root vnode, these
requests actually end up being calls to the kernel’s
own existing functions. On other vnodes, however,
these calls are routed to the root Adeos which then
hands over a list of visible devices to the vnode’s
Adeos. It is this list which is provided to the kernel
running on this vnode.

Device transitions require the dynamic addition
and removal of entries in the kernel’s PCI tables. The
hotplugging work comes in as being very useful here
since it should be easy to reuse this functionality to
implement device migration as described above.

6.3 Interrupt management

Easy access to a vnode’s interrupt flow is essential
for implementing many of the capabilities described
here. Portals are the most basic service for which
taping in the interrupt flow is necessary. Fault con-
tainment and kernel debugging are yet other reasons
why interrupt interception by the nanokernel is es-
sential.

To achieve this, we need to modify the kernel
in order to divert all interrupt allocation to the
nanokernel. This has already been implemented and
is available in the current Adeos implementation.
See [14] for more details. Basically, set_intr_gate()
is modified to call on Adeos’ interrupt allocation ser-
vices instead of manipulating the interrupt table di-
rectly.

All the modifications required for this are eas-
ily surrounded by appropriate #ifdef/#endif state-
ments.

6.4 Locking primitives

Since we need to receive all interrupts that come
from other processors, including ones which don’t
belong to Linux, we need to modify the kernel so
that it doesn’t disable the interrupts in hardware.
Instead, the interrupt pipeline’s properties are put
to use here. In essence, Linux’s requests to disable
interrupts result in a pipeline stall. Conversely, re-
quests to enable interrupts unstall the pipeline. Re-
member that interrupts are not propagated in the
pipeline beyond a stalled stage.

As above, the modifications required to the kernel
sources are relatively small and are all conditional to

11 This address could be passed as a kernel boot parameter if virtual addresses cannot be easily converted into physical

addresses by this boot code.

enabling the Adeos nanokernel in the kernel’s config-
uration. The complete details are provided in [14].

6.5 Timer

This is not so much a change to the kernel as it is a
change of policy. There’s only one 8253 in the sys-
tem and it becomes very inconvenient in the current
setup to try to have all vnodes use this timer. In-
stead, it is much more viable for each vnode to use
the timers found in each CPU’s APIC. Clock syn-
chronization then becomes the job of the clustering
and SSI components. It is, however, conceivable that
Adeos may be modified to allow very low-level clock
synchronization through its DSP.

7 Virtual devices

The virtual devices are the glue that enables all the
vnodes to communicate together. These devices ex-
port known abstractions to userspace. These ab-
stractions are themselves used by the clustering and
SSI components to form a cluster. In order to best
communicate with other vnodes, the virtual devices
use the nanokernel’s bridge and portal services di-
rectly. The following subsections discuss the key vir-
tual devices to be implemented and provide an out-
line of each device’s operation. Note that, as stated
in [12], such devices are fairly easy to implement.

7.1 Network device

The network device most likely appears as a normal
Ethernet device to the rest of the kernel. It starts by
opening a named bridge, the “Ethernet” bridge, and
maps this bridge into its kernel’s address space. This
bridge is the Ethernet “wire” that connects all the
vnodes. Obviously, these devices will have to include
a software implementation of CSMA/CD in order to
synchronize accesses to the virtual wire.!?

Because the virtual NICs are free, a vnode can
have many such devices, each connected to a different
network. Since each vnode in the cluster is connected
to all such existing networks, efficient load-balancing
can insure that no one network is saturated.

A similar device has been implemented as part of
the examples presented in [23]. That device is rather
simple, but it is certainly a good start for whoever
wants to implement an Adeos-aware virtual NIC such
as the one described here.

7.2 Distributed filesystem

A distributed filesystem is an important SSI compo-
nent. Many such filesystems already exist. Often,
they are implemented over existing network services.
NFS, for instance, could easily be used on top of the
virtual NIC described earlier. Given the architecture
described in this proposal, however, it is likely that
other, more efficient, distributed filesystems can be
implemented.

In this case, a filesystem could use Adeos’ ser-
vices to communicate with the other filesystem com-
ponents on the other vnodes. In the simplest im-
plementation, the root vnode could be the central
repository with all the other vnodes making requests
to it. This is similar to NFS’ operation but would
involve only one software layer instead of two.

The necessity of having a unique /tmp directory
was discussed in [17]. In this scheme, one instance of
the distributed filesystem could be mounted at /tmp
on each vnode, hence enabling a cluster-wide unique
/tmp. There are, of course, other directories which
can use such a filesystem. In the extreme, the entire
cluster could have the same root directory.

It is also possible to implement a virtual dis-
tributed block device, but as with the MTD work
where JFFS2 is more efficient than ext2 over
NFTL [25], it is preferable to have an Adeos-aware
filesystem than an Adeos-aware block device.

7.3 Console device

Since there is only one real console on the entire sys-
tem, there needs to be a way for system adminis-
trators to communicate with the console of any vn-
ode. This too is a service provided on top of Adeos.
Each vnode would have a line discipline implemented
over a local named bridge. This line discipline would
serve as the vnode’s console. The root Adeos would
therefore be able to selectively communicate with the
console of any vnode. Such a line discipline should
be able to serve any vnode, including the root vnode.

7.4 Userspace shared memory regions

Some applications may be designed to make efficient
use of the current setup. It may be useful for such
applications to have access to the bridge facilities in
user space. Although it could be possible to export

12This is a very good illustration of the use of inter-vnode locks. Interestingly, the scalability of the algorithm used to
implement such a lock will most likely be independent of Adeos’ or Linux’s or even the clustering and SSI components’ own

scalability.

Adeos’ services to user space using a different soft-
ware interrupt, it may be more appropriate to encap-
sulate Adeos’ services in a kernel device driver. Such
a device driver would implement all the security and
sanity checks Adeos isn’t meant to take care of.

8 Clustering and single system
image components

Any in-depth work on Linux clusters on SMP hard-
ware will have to take into consideration the very
large amount of work already carried on classic clus-
ters since much of this work can be reused as-is.
As a matter of fact, issues such as providing a sin-
gle system image, distributed shared memory, and
distributed filesystems have already been amply dis-
cussed and have been implemented many times over.
As stated above, Beowulf and Mosix are prime candi-
dates, but have a look at the Linux High-Availability
project for a more detailed list [9].

As in other clustering situations, each node sees
its own local kernel and a set of network services it
can use to connect to other nodes.

That being said, clustering packages may make
assumptions that do not hold in the current architec-
ture. Primarily, by having nodes so close together,
physical network latencies and problems disappear.
Other issues such as node failure can be detected
using other means than a keepalive signal.

In the simplest configuration, the root vnode can
be used as the central cluster node. Each node could
then export its own local process table using a lo-
cal named bridge, and the root vnode would use this
information to provide a unique /proc. Other con-
figurations may be more appropriate.

It is not the purpose of this paper to try to discuss
all the details of how existing clustering solutions can
best use the architecture presented. Rather, the de-
signers of such solutions are encouraged to analyze
this proposal and comment on the applicability and
usefulness of their systems to it.

9 Work ahead

Most of the work presented here can be conducted
by independent teams. There will be a need to syn-
chronize in order to agree on interfaces, but there is
little need to start a complex project for this work.
This is yet another advantage of this proposal: if
most developers agree on the best way to proceed,
then each team can head its way with little need for
a single authority to head the rest of the effort.

10

It may seem that each developer would require
very expensive hardware to participate in this effort.
A 4 CPU machine, with 2 vnodes of 2 CPUs each,
should be sufficient, however, to develop most of the
system’s components. Further testing will certainly
be required on machines with a greater number of
CPUs, but such testing can be carried out by a rela-
tively small number of developers taking part in this
effort.

Here is the list of system components in decreas-
ing order of the amount of work required for imple-
mentation:

1. Adeos nanokernel
2. Virtual devices

3. Linux kernel

4. Kernel-mode bootloader
5

. Clustering and SSI components

The nanokernel is clearly the component which
will require the largest amount of work. It will have
to be extended to support device management, phys-
ical memory management, and distributed opera-
tion. Device management is relatively simple since
it mainly requires each vnode’s Adeos to retrieve a
device list from the root vnode. The physical mem-
ory management unit can probably reuse existing
memory management algorithms that already im-
plement memory defragmentation. Finally, the dis-
tributed communication subsystem can reuse exist-
ing distributed resource sharing algorithms. In the
case of the current proposal, the operation of this
subsystem is likely to be simplified because of the
use of a root vnode.

The virtual devices can be developed indepen-
dently from one another. Once the Adeos bridge
APT established, such devices should be relatively
straight-forward to implement. For someone already
familiar with the implementation of drivers for the
equivalent real devices, this probably amounts to less
than 2 weeks worth of work, granted the software
CSMA/CD is easy to implement. The distributed
filesystem may require some more work, however. A
look at the state of the art in distributed filesystem
research is probably warranted.

Most kernel modifications presented in section 6
are fairly trivial. Less trivial, however, is the kernel
initialization. This will require someone already fa-
miliar with SMP booting. This work may require an
in-circuit emulator (ICE). Alternatively, a set of ad-
hoc development tools could be implemented to help
in the development. It may facilitate the process to
start off with 2 different kernel images. The first

one would have serial port support disabled while
the second would have it enabled. Work on getting
the second vnode booting could then continue us-
ing another host to debug the second vnode through
the serial port. Whichever scheme is chosen, note
that the development of the boot process does not
require the availability of the complete nanokernel.
Vnodes will, of course, not be able to communicate
without it, and vnodes will therefore be isolated in
its absence, but this should not impede on the devel-
opment of the boot procedures.!®

The kernel-mode bootloader too should be fairly
simple to implement. See the references mentioned
in section 5.

Finally, the existing clustering and SSI compo-
nents should be used as-is in the first generation of
this scheme. Simplifications and enhancements to
make full use of the locality of the cluster nodes could
probably be added in future iterations of this scheme.

10 Caveats and future work

The reliance on a central root vnode is this scheme’s
main weakness. Any problem on this central vnode
will bring the entire cluster down. Yet, it is the use
of such a central vnode that makes the entire scheme
very simple to implement. It would be beneficial to
plan for future iterations of this scheme where all vn-
odes are entirely independent of one another. If any
vnode fails, then it could be brought up again by
any other vnode. Great care will have to be taken to
ensure that such a distributed scheme does not add
additional overhead, however.

Another possibility is to look into bullet-proofing
the root vnode. Running additional error-handling
domains on the root vnode’s Adeos is one aspect that
should be looked at. Running as few device drivers
as possible in the root vnode is likely to diminish the
risk of failure too.

Although the current approach is unlikely to be
influenced by illegal virtual memory accesses on any
vnode, it is definitely very fragile to raw physical
memory accesses. Indeed, any illegal physical mem-
ory access by any vnode is likely to bring the entire
cluster down. Properly written drivers and clean
coding are the only immediate remedies. If hard-
ware were able to cooperate in one way or another
in checking for such illegal accesses, then it would be
all the better.

Currently, all CPU and physical RAM resources
allocated to a booting kernel are never reclaimed.
Hence, contrary to Disco, there is no CPU migration

possible or physical memory load-balancing. Such
functionality can probably be added, nevertheless,
by using the existing work on CPU and memory
hotplugging [10, 11]. Actual physical memory and
CPUs could then migrate between vnodes. Adeos
would certainly need to be modified to take in ac-
count such migrations.

Also, only physically contiguous vnodes can exist
in the current design. It may be desirable to aug-
ment Adeos to handle vnodes spanning many differ-
ent physical machines. Having appropriate hardware
to facilitate the mapping of physical memory regions
between separated machine would certainly help in
this regard. A cluster of clusters could then be fea-
sible.

11 Conclusion

This paper has presented a scheme for implementing
Linux clusters on SMP hardware. An architecture
was presented to enable many existing components
to interact together in order to provide this function-
ality. In particular, the approach suggests the use of
the Adeos nanokernel to enable multiple Linux ker-
nels to exist in parallel on the same hardware, each
in a different virtual node. To this end, the kernel
requires minor modifications in order to use Adeos’
services instead of directly accessing key hardware
resources.

Virtual devices, such as network devices, a dis-
tributed filesystem, and a line-discipline, are imple-
mented as kernel modules. Instead of obtaining their
resources from Linux, however, they use Adeos’ ser-
vices directly. In turn, these devices enable existing
clustering and single system image components to be
used with little or no modification.

In addition to being modular, each component in
this scheme is relatively simple to implement. The
clear advantage of this scheme is that Linux’s capa-
bility to scale is unrelated to Adeos’ or the clustering
and single system image components’ ability to han-
dle large numbers of virtual nodes. Also, the kernel
can continue to be developed independently from all
the other components in this scheme.

This paper was written with the purpose of en-
couraging discussion on building clusters using the
Linux kernel and SMP hardware. You are encour-
aged to make suggestions and participate in this ef-
fort in order to provide “a cluster in a PC” for the
masses.

137 Implement boot procedure in arch/i386/kernel/vnodeboot.c ?

11

References

[1] VMWare, http://www.vmmware.com/.
[2] Adeos: http://www.freesoftware.fsf.org/adeos/.
[3] Beowulf: http://www.beowulf.org/.
[4] Mosix: http://www.mosix.org/.
]

[5] User-Mode Linux:
linux.sourceforge.net /.

http://user-mode-

[6] Linux Scalability Effort:
http:/ /lse.sourceforge.net /.
[7] Linux Scalability = Effort: NUMA,

http://lse.sourceforge.net /numa/.
[8] LinuxBIOS: http://www.linuxbios.org/.
[9] Linux High-Availability: http://linux-ha.org/.

[10] Linux Hotplug CPU support:
http://sourceforge.net /projects/lhcs.
[11] Linux Hotplug Memory support:

http://sourceforget.net /projects/lhms.

[12] E. Bugnion, S. Devine, and M. Rosenblum.
Disco: Running Commodity Operating Systems
on Scalable Multiprocessors. In Proceedings of
the 16th ACM Symposium on Operating Sys-
tems Principles, October 1997.

Intel corp. Intel Architecture Software Devel-
oper’s Manual, Volume 3: System Programming
Guide.

P. Gerum and K. Yaghmour. Adeos
nanokernel for linux kernel, June 2002.
http://lwn.net/Articles/1743/.

K. Govil, D. Teodosiu, Y. Huang, and M. Rosen-
blum. Cellular disco: resource management us-
ing virtual clusters on shared-memory multipro-
cessors. In Proceedings of the 17th ACM Sympo-
sium on Operating Systems Principles, Decem-
ber 1999.

[16] L. Marowsky-Brée. = The Open Clustering
Framework. In Proceedings of the 2002 Ottawa

Linux Symposium, June 2002.

12

[17] P. McKenney. Larry McVoy’s SMP Clusters,
November 2001. http://lwn.net/Articles/4536/.

[18] L. McVoy. Scaling linux with (partially) cc clus-
ters, July 2002. http://www.bitmover.com/cc-
pitch/.

[19] D. Probert and J. Bruno. Efficient cross-domain
mechanisms for building kernel-less operating

systems.

D. Probert and J. Bruno. Building fundamen-
tally extensible application-specific operating
systems in space. In Technical Report TRCS95-
06, Computer Science Dept., UC Santa Bar-
bara, March 1995.

[20]

[21] D. Probert, J. Bruno, and M. Karzaorman.
SPACE: a new approach to operating system
abstraction. In International Workshop on Ob-
ject Orientation in Operating Systems, pages

133-137, October 1991.

[22] D. Ridge, D. Becker, and P. Merkey. Beowulf:
Harnessing the Power of Parallelism in a Pile-of-

PCs. In Proceedings of IEEE Aerospace, 1997.

[23] A. Rubini and J. Corbet. Linuz Device Drivers,

2nd ed. O’Reilly, 2001.

[24] J. Sugerman, G. Venkitachalam, and B.-H. Lim.
Virtualizing I/O Devices on VMWare Worksta-
tion’s Hosted Virtual Machine Monitor. In Pro-
ceedings of the 2001 USENIX Annual Technical

Conference, June 2001.

[25] D. Woodhouse. JFFS: The Journalling Flash
File System. In Proceedings of the 2001 Ottawa

Linuz Symposium, July 2001.

[26] Karim Yaghmour. Adaptive Domain Environ-
ment for Operating Systems, February 2001.
http://www.opersys.com/ftp/pub/Adeos/

adeos.ps.

[27] Real-
of
for

2001.

Karim Yaghmour. Building a
Time Operating System on top
the Adaptive Domain Environment
Operating Systems, February
http://www.opersys.com/ftp/pub/Adeos/
rtosoveradeos.ps.

