PERFORMANCE

Process Tracing with the Linux Trace Toolkit
B. B. Ramya, V. Pavithra, and B. Thangaraju

the GNU Debugger (gdb), Linux Kernel Source Level
Debugger (kgdb), or Linux Kernel Debugger (kdb), but if we
want to trace a particular process, we must use the strace utility,
which will trace system calls and signals. Strace will trace only one
process and present the result in text form. To trace many processes in
a given period of time, Linux Trace Toolkit (LTT) is a better choice.
LTT is distributed as free software under GPL. Applying an
LTT-patch to the corresponding kernel will create a module to trace
48 events. The trace toolkit provides
a daemon, which will capture the
events and write it to disk. The
provided trace visualizer is used to
analyze the tracing data in three
different forms (viz., event graph,
process analysis, and raw event

Debugging an application or kernel program can be done with

Relayfs is a file system, which is used to move data from kernel
to user space in an efficient manner. After configuring the kernel,
usually in 2.4, we would execute make dep, make bzImage, and
make modules command. Now, all these will work together if you
execute make.

To install kernel modules, the existing installation command will
not work in 2.6 kernel. For this, you must download modutilities
and install it. Then, execute the make modules_install command,
which will install all the kernel modules, and the make install
command, which will update the
boot loader. Now you can boot the
system with the LTT-enabled 2.6
kernel.

After installing the trace toolkit,
we need to mount the relayfs then
execute a daemon for a specific

descriptions). - | i o interval of time. This tracer daemon
- i s toavace .
LTT is useful for systems admin- [omctates “Mﬁ‘}'fémr will capture all the events for the

istrators for analyzing the perfor-

given time period and store them in

mance of the system. It is useful for

the specified file name. The cap-

programmers for getting details of

tured data can be analyzed by a

the interaction between kernel and
user-level applications and for
embedded/real-time programmers
for getting information about real-
and non-real-time tasks’ behavior.
The theoretical aspect of LTT is
skipped in this article because it is
well documented in the Linux Trace Toolkit Reference Manual.

Enabling LTT with 2.4 kernel is very straightforward in the
sense that an available trace toolkit contains all the necessary
patches with documentation. It can be found at:

oo
il

http://www.opersys.com/1tt/downloads.html

However, enabling LTT with the 2.6 kernel requires some guidance
to make the task successful and to save time. In this article, we’ll
guide you through the necessary packages, patches, and implemen-
tation details for 2.6 kernel. We will also demonstrate the usage of
the LTT with a simple example.

Linux Trace Toolkit with 2.6 Kernel

The procedure for building the Linux kernel has been changed in
2.6. To enable LTT and relayfs, you must first apply the correspond-
ing patches with the source code. These patches will modify the
source code in the respective places. The make xconfig command
will show the menu with a new look in 2.6. As shown in Figures 1
and 2, the tracing support and relayfs are enabled.

November 2004

T e——
ol e chec i g S 000 0 the veny

www.sysadminmag.com

trace visualizer.

53/, st compuents i b bl th keel
sl it e e g,

fmcn,The 63 e e by
gl e spce s ssueda

rachng
1acerl a ace daemon
‘Command.

Necessary Packages

The following packages should
downloaded from their respective
Web sites:

Kernel —
ftp://ftp.kernel.org/pub/Tinux/kernel/v2.6/ \
Tinux-2.6.3.tar.bz2

Trace Toolkit — http://www.opersys.com/ftp/pub/LTT/ \
TraceToolkit-0.9.6pre2.tgz

Mod-Utils — http://www.kernel.org/pub/Tinux/kernel/ \
people/rusty/modules/module-init-tools-3.0-pre9.tar.gz

Patches for relay file systems — http://www.opersys.com/ftp/ \
pub/relayfs/patch-relayfs-2.6.0-test11-031203.bz2

Linux trace toolkit patch for 2.6 kernel —
http://www.opersys.com/ftp/pub/relayfs/LTT/ \
patch-1tt-1inux-2.6.0-testll-vanilla.bz2

The above two patches are for kernel building with LTT and relayfs
enabled. To use relayfs on LTT, download the patch from:

http://www.opersys.com/ftp/pub/relayfs/LTT/ \
patch-Ttt-on-relayfs-0.9.6pre2-031203.bz2

Sys Admin — 41

Implementation

Download the 2.6.3 kernel source from the abovementioned
Web site along with the patches and untar the kernel in /usr/src
directory:

bzip2 -d /usr/src/linux-2.6.3.tar.bz2
tar xvf linux 2.6.3.tar

This will create a linux-2.6.3 directory under /ust/src. Then, copy
patch-relayfs-2.6.0-test11-031203.bz2 and patch-Itt-linux-2.6.0-
testl 1-vanilla.bz2 into the linux-2.6.3 directory.

Unzip them using:

bzip2
bzip?2

-d patch-relayfs-2.6.0-test11-031203.bz2
-d patch-Ttt-Tinux-2.6.0-testll-vanilla.bz2

then apply the above patches to the Linux kernel:

patch -pl < patch-relayfs-2.6.0-test11-031203
patch -pl < patch- 1tt-Tinux-2.6.0-testll-vanilla

These patches will modify the kernel files. Next, we need to config-
ure and rebuild the kernel.

Enable the tracing option and relay file system in the configura-
tion menu as in Figures 1 and 2. Then a make will build the kernel
and create the modules.

Figure 1 Enabling tracing support in kernel configuration

R Gcont

Elle Option Help

o sE I E
Option ~ | option
[Code maturity level options ~-@Prompt for development and/or incomplete code/drivers
~-General setup | |~E3Select only drivers expected to compile cleanly

DRemove kemel features (for embedded systems)
Loadable module support
Processor type and features
~+Power management options (ACPI, APM)
ACPI (Advanced Configuration and Power Interface) Suppo

BSelect only drivers that don't need compile-time extemal fimware
& Tracing support

APM (Advanced Power Management) BIOS Support
\..CPU Frequency scaling
Bus options (PCI, PCMCIA, EISA, MCA, ISA)
Executable file formats
~Device Drivers
Generic Driver Options
Memory Technology Devices (MTD)
Parallel port support
Plug and Play support
Block devices
ATA/ATAPI/MFM/RLL support
SCS! device support
-0ld CD-ROM drivers (not SCS, not IDE)
Multi-device support (RAID and LVM)
Fusion MPT device support
IEEE 1394 (FireWire) support (EXPERIMENTAL)
120 device support
Macintosh device dvers
~Networking support
Amateur Radio support
11DA (nfrared) support
- Bluetooth support
ISDN subsystem
Telephony Support
Input device support
< Character devices

Tracing Support TRACE)

Itis possible for the kemel to log important events to a trace
facility. Doing o, enables the use of the generated traces in order
to reconstruct the dynamic behavior of the kernel, and hence the

| whole system.

| The tracing process contains 4 parts.
1) The logging of events by key parts of the kernel
2) The tracer that keeps the events in a data buffer.
3) A trace daemon that interacts with the tracer and is
notified every time there is a certain quantity of data to
vead from the tracer,
4) A trace event data decoder that reads the accumulated data
and formats it in a human-readable format.

If you say ¥, the first two companents will be bult into the kemel.
Critical parts of the kemel will call upon the kemel tracing
function. The data is then recorded by the tracer if a trace daemon
Is running in user-space and has Issued a *start” command.

For more information on kemel tracing, the trace daemon o the event
decoder, please check the following address
« hutp/pwww.opersys.com/LTT

Figure 2 Enabling relayfs in kernel configuration

v =

Eile Option Help

‘o s Il E
Option “| Option
it device support a.
Character devices B/proc file system support
‘Serial drivers. Ojdev file system support (OBSOLETE)
Mice ~-M/dev/pts file system for Unix98 PTYs
iem

.- Olfdev/pts Extended Attributes
Virtual memory file system support (former shim fs)
DHugeTLB file system support
=
DEnable klog debugging support

Watchdog Cards
Ftape, the floppy tape device drver
PCMCIA character devices

12C support

= Multimedia devices
Digital Video Broadcasting Devices

Graphics support
Console display drver support
Logo configuration

Sound
Advanced Linux Sound Architecture
Open Sound System

~-USB support
1~USB HID Boot Protocol drivers

_ Relayfs file system support RELAYFS_Fs)

" Relayfs is a high-speed data relay filesystem designed to provide
an efficient mechanism for tools and facliies to relay large

USB Serial Converter support amounts of data from kemel space to user space. It's not useful

USE Gadget Support on its own, and should only be enabled if other facilties that

L Fle systems need it are enabled, such as for example kiog or the Linux Trace

CD-ROM/DVD Filesystems Toolkit

DOS/FAT/NT Filesystems

Pseudo filesystems

Miscellaneous filesystems

Network File Systems

Partiion Types

Native Language Support

Profiling support

Kemel hacking

Securly options

Cryptographic options

Library routines -

See <file:Documentation/filesystems/relayfs.txt> for further
Information.

This file system s also available as a module (= code which can be
inserted in and removed from the running kemel whenever you want).
The module Is called relayfs. If you want to compile it as a

module, say M here and read <file:Documentation/modules. txt>.

f unsure, say N.

42 — Sys Admin

www.sysadminmag.com

The modules of the 2.6.3 kernel will not be loaded because they
come with version 2.4 of module-init tools. So, we must get the
latest version of the mod-utils and configure it for the kernel using:

./configure
make moveold
make

make install

--prefix=/

to translate the old /etc/modules.conf into /etc/modprobe.conf with the
Jgenerate-modprobe.conf script that comes with module-init-tools:

./generate-modprobe.conf /etc/modprobe.conf

Run make modules_install to install the kernel modules. Next,
make install will update the boot loader and reboot the system
with the new kernel.

Next, traverse to the /ust/src/linux-2.6.3 directory and untar the
TraceToolkit-0.9.6pre2.tgz:

tar xzvf TraceToolkit-0.9.6pre2.tgz

This will create a TraceToolkit-0.9.6pre2 directory and change into
that directory. Apply the patch:

bzip2 -d patch-1tt-on-relayfs-0.9.6pre2-031203.bz2
patch -pl < patch-Ttt-on-relayfs-0.9.6pre2-031203

Next, configure the tracetool using:

./configure
make
make install

Mount the relay file system:

mkdir /mnt/relay
mount -t relayfs relayfs /mnt/relay

Note that you can also make an entry in the /etc/fstab file for relayfs so
that you need not mount the relayfs every time you restart the system:
relayfs defauls 11

/mnt/relay relayfs

Now, the tracetool is up and ready to trace the system.

Working with LTT

We are interested in capturing the system events along with the
following program’s execution trace. The program calls the fork
system call, which will create a new process:

int main (void)

{

fork ();

printf (“Hello Fork%d\n”, getpid());
return 0;

}

To get a trace of the system during the execution of this program,
we start the trace daemon for 5 sec as shown below:

tracedaemon -ts5 ./outl.trace ./out.proc

November 2004

tracedaemon is the command to run the daemon for a given time
period, where t is for time, s for time unit in seconds, and 5 for the
given time period. Outl.trace and out.proc files are used to store the
trace data for analysis.

To get process details in a graphical format, execute the follow-
ing in the shell prompt:

tracevisualizer -g outl.trace out.proc outfile

The tracevisualizer command will launch the trace toolkit, and
the -g option is for graphical format. The next two fields are the
input files, which we specified to store the data collected by the dae-
mon process earlier. The last argument, outfile, is where the trace
and analysis are written in text format.

The event graph of the trace is shown in Figure 3. It gives infor-
mation about the processes that were executing during the trace,
along with their process ids. The right side of the figure shows the
entire trace of the process. It shows the details of what system calls,
signals, traps, hard and soft IRQs were handled for the specific
process that is highlighted in the left box, along with its interactions
with the kernel and any other processes that are executing.

The highlighted bar shows the trace of myfork that is executable
of fork_demo.c. When the CPU executes a system call like fork, the
CPU will change mode from user to kernel. The system call will be
executed in kernel mode, and the fork system call will spawn a new
child (unnamed child with pid 274 in Figure 3).

Processes of interest or system information can be analyzed by
the process analysis method as shown in Figure 4. This provides
information about the number of system calls the process has called
during its execution and the total time the kernel has taken to exe-
cute each system call. It also lists the process characteristics such as
the number of system calls, traps the process has made, the time
spent by the process waiting for I/O, and the quantity of data read
and written to files.

The “Raw Trace” view is there to list all events that were logged by
the data acquisition module, which is shown in Figure 5. The high-
lighted bar shows a Scheduler change for process id 271 (i.e., myfork).

Figure 3 Event graph

hd Trace Visualizer - outl.trace
File Tools Options Help

Conclusion

The Linux Trace Ttoolkit is a constructive tool to help all kinds
of Linux users see and understand system events. In this article, we
described how to enable LTT with 2.6.3 kernel, trace simple process
events, and analyze trace data in different forms.

Acknowledgement
The authors are very grateful to Mr. Karim Yaghmour, creator of
the Linux Trace Toolkit, embedded and real-time Linux expert.

References

Linux Trace Toolkit Reference Manual available at —
http://www.opersys.com/1tt/dox/1tt-online-help/index.html

Trace Toolkit -0.9.5a.tgz available at —
http://www.opersys.com/1tt/downloads.html

B. B. Ramya and V. Pavithra work as Project Trainees, and B.Thangaraju is
a Manager in the Embedded and Product Engineering Solutions (E&FPE),
Wipro Technologies in Bangalore, India. B. Thangaraju can be reached at
bt_raju@vsnl.net.

Figure 4 Per- EERE anaIySIs

B Trace Visualizer - utL.trace
File Tools Options Help

The &1l Migrty (0) Frocess charastenistios o
init (1 Homber of igstsm calls; 8
oneer o B 5
[keRmme0.(2) Blantity of dota resd from Pilest
[—events/0 (3) Quantity of dats weitken to filsss i4
[kolockad (@) Ting Minnirgy? rocess st S 2 ne g
[eanmd (5) Tine LR ror 1 61608700 25 0100 ¥
pdiush ©) Susten o511 ascountins nane, b bines called, batel bine spent in syssall) ¢
[spafusn.(7) nunaps 1 ge0em
[—kswapdn (8) urite L groc0153
[t 6o feti! R e
L FSiabi: Toooees
kaard) getpid: i 0,000,006
{—Khubd (BT) Forks 1 9,000,796
[—knodemgrd_0 (215)
tracedaeman (273)
o] [2]

Start 1,079,361,631,161,3 3pan: 1,635

File Tools Oplions He\p

Event Graph | Process analysis | Raw Trace
[cPu-iD [Event [Time| P\DI niry Lengt Event Descriptian 2]
Unnamed chitg @74) ||| Process 7 16 WAKELP PID - 271, STATE -1 il
on (273) C il
- Syscall exit
@5t 0 Syscall eniry 073,361,631161675 271 12 GYSCALL : fork; EIP : 0xDB0483E6
it (259) 0 Memory 079,361,631,161,748 271 12 PAGE ALLOC ORDER : 1
Knodemgre_D (216) i Process 079,361,631,162,567 271 16 FORK : 274
Khubd (67} 0 Syscall ext 079,361,631,162.574 271 7
kseriod (10) 0 ched change 079,361,631,162,585 274 19 IN @ Z74; OUT @ 271; STATE : 0
aiorD (3) 0 Syscall ext 079,361,631,162.599 274 7
kswapd0 (5) 0 Trap entry 079,361,631,162 666 274 13 TRAP : page fault; EIP : OX080483EC
pauh (7) 0 Trap et 079,361,631,162817 274 7
piflush (5) 0 Trap entry 079,361,631,162,916 274 13 TRAP : page fault; EIP : Ox40006E0D
Kapme (©) 0 Trap exit 079,361,631,163,000 274 7
Khlocke/D (4) 0 Trap entry 079,361,631,163,249 274 13 TRAP : page fault; EIP : Ox40009FEQ
events/l () 0 Trap et 079,361,631,163,349 274 7
ksoflirgui0 (2) 0 Syscall entry 079,361,631,163,369 274 12 SYSCALL : getpid; EIP : 0x080483F1
it (1) 0 Syscall exit 079,361,631,163,374 274 7
Kemel (0) 0 Trap entry 079,361,631,163 477 274 13 TRAP : page fault; EIP : 0x42052390
0 Trap ext 079,361,631,163.497 274 7
% 5 G bl 0 Trap entry 079,361,631,163 550 274 13 TRAP ; page faull EIP : 0x12047F00
Stan: 1,079,361,631,161,3 Span: 1,635 Start 1,079,361,631,161,2° Span: 1,635
November 2004 www.sysadminmag.com Sys Admin — 43

